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ABSTRACT

Passive microwave remote sensing has been recognized as a potential method for measuring soil moisture.
Combined with field observations and hydrological modeling brightness temperatures can be used to infer
soil moisture states and fluxes in real time at large scales. However, operationally acquiring reliable soil
moisture products from satellite observations has been hindered by three limitations: suitable low-frequency
passive radiometric sensors that are sensitive to soil moisture and its changes; a retrieval model (param-
eterization) that provides operational estimates of soil moisture from top-of-atmosphere (TOA) microwave
brightness temperature measurements at continental scales; and suitable, large-scale validation datasets. In
this paper, soil moisture is retrieved across the southern United States using measurements from the
Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) X-band (10.65 GHz) radiometer
with a land surface microwave emission model (LSMEM) developed by the authors. Surface temperatures
required for the retrieval algorithm were obtained from the Variable Infiltration Capacity (VIC) hydro-
logical model using North American Land Data Assimilation System (NLDAS) forcing data. Because of the
limited information content on soil moisture in the observed brightness temperatures over regions charac-
terized by heavy vegetation, active precipitation, snow, and frozen ground, quality control flags for the
retrieved soil moisture are provided. The resulting retrieved soil moisture database will be available through
the NASA Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) at a 1/8°
spatial resolution across the southern United States for the 5-yr period of January 1998 through December
2002. Initial comparisons with in situ observations obtained from the Oklahoma Mesonet resulted in
seasonal correlation coefficients exceeding 0.7 for half of the time covered by the dataset. The dynamic
range of the satellite-derived soil moisture dataset is considerably higher compared to the in situ data. The
spatial pattern of the TMI soil moisture product is consistent with the corresponding precipitation fields.
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Using TRMM/TMI to Retrieve Surface Soil Moisture over the Southern United States

1. Introduction

Soil moisture is one of the key variables for studying
the terrestrial water and energy cycles because of its
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role in controlling the partitioning of available radiative
energy into latent and sensible heat, and controlling the
partitioning of precipitation into infiltration and runoff.
Soil moisture integrates precipitation and evaporation
over periods of days to weeks and introduces a signifi-
cant element of memory in the atmosphere-land sys-
tem. Soil moisture observations at large scales are criti-
cal for a variety of applications, including assimilation
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into weather forecasting [four-dimensional data assimi-
lation (4DDA) models], crop and drought monitoring,
for initial conditions in flood forecasting, and quantify-
ing the earth’s water budget. There is strong climato-
logical and modeling evidence that the fast recycling
of water through evapotranspiration and precipitation
is a primary factor in the persistence of dry or wet
anomalies over large continental regions during sum-
mer (Koster and Suarez 2004). On this account, soil
moisture is the most significant boundary condition that
controls summer precipitation over the central United
States and other large midlatitude continental regions,
and has essential initial information for seasonal pre-
dictions (Koster et al. 2000, 2003, 2004; Salvucci et al.
2002).

To date there have been very few in situ soil moisture
observing systems that could provide direct estimates of
regional or continental soil moisture fields. Even in
seemingly large networks, precise in situ measurements
of soil moisture are sparse, often infrequently measured
at a single point, which is only representative of a small
area. The Oklahoma Mesonet system is among the larg-
est networks; since 1996, a total number of 114 auto-
mated stations have been set up to measure soil mois-
ture every 30 min (information available online at
http://www.mesonet.org/). Robock et al. (2000) de-
scribe their global soil moisture data bank, which ar-
chives much of the available soil moisture measure-
ments from a disperse set of networks. Soil moisture
measurements at regional to continental scales could be
used to address the following science questions that are
central to research programs like the World Climate
Research Programme (WCRP) Global Energy and Wa-
ter Experiment (GEWEX), regional studies like the
North American Monsoon Experiment (NAME), or
agency research programs such as those in the National
Aeronautics and Space Administration (NASA) re-
lated to the water cycle (information online at http:/
earth.nasa.gov/visions/researchstrat/):

¢ Is there a feedback mechanism between soil moisture

and atmospheric boundary layer that can be verified?

This has been explored somewhat by Betts (2000),
Betts et al. (2003), and Berbery et al. (2003) with
modeled data and assumptions, but needs observa-
tions for more definitive results.

e Do climate and weather prediction models accurately
represent the land surface partitioning of precipita-
tion into infiltration and runoff? Can they be im-
proved by the assimilation of surface soil moisture
observations?

The North American Land Data Assimilation Sys-
tem (NLDAS) (Mitchell et al. 2004) has evaluated
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how well land surface models compare to observed
soil moisture (Robock et al. 2003), while Berbery et
al. (2003) has investigated the relationship between
soil moisture and atmospheric processes from the
coupled Eta Model.

 Can spatial and temporal surface soil moisture obser-
vations provide new information on soil hydrological
processes and properties?

Investigations have used soil moisture data to esti-
mate soil properties (Hollenbeck et al. 1996), hydro-
logic processes (Jackson 2002; Salvucci 2001; Saleem
and Salvucci 2002), and land-atmospheric coupling
(Betts 2000). To date, scientific investigations related
to these questions have often relied on model-based
soil moisture fields, or on limited in situ data.

For remote sensing of soil moisture, microwave fre-
quencies have some distinctive advantages over other
spectral regions (Schmugge et al. 2002). Microwave
emission at frequencies below about 10 GHz can pen-
etrate through grass and short crops, and is essentially
unaffected by atmospheric water vapor. Also, the top-
of-atmosphere (TOA) microwave brightness tempera-
ture measurement is independent of sun illumination.
Soil moisture can be retrieved from the microwave
brightness temperature (73) because of the strong re-
lationship between 7'z and wet soil emissivity—increased
soil moisture leads to a decrease in soil emissivity and
consequently to observed brightness temperature. The
sensitivity of the relationship is frequency dependent—
the lower the frequency, the higher the sensitivity to
soil moisture. Lower frequencies are also less affected
by vegetation and surface roughness. Within the same
frequency, horizontally polarized emission is more sen-
sitive to soil wetness as compared to the vertical com-
ponent.

It has been shown that low-frequency passive micro-
wave data have the potential to improve operationally
produced soil moisture fields from numerical weather
prediction models (e.g., Drusch et al. 2004; Seuffert et
al. 2004). The challenge is whether such remotely
sensed soil moisture datasets can be achieved with suf-
ficient accuracy and reliability from space on the con-
tinental scale for observation periods exceeding typical
field experiments. For the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI), the sensor
characteristics include a dual-polarized passive radiom-
eter for a frequency of 10.65 GHz, with a spatial reso-
lution of 38 km, that measures microwave emissions
over the top ~0.5 cm surface depth. The TMI has been
in operation since December 1997, and its 10.65-GHz
(X band) radiometer is better than previous instru-
ments in terms of radiometric frequency, repeat cover-
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age (where available), and resolution (38 km). Before
TMI, low-frequency passive microwave spaceborne
sensors included a 1.4-GHz (L band) sensor with a 110-
km footprint on Skylab (Jackson et al. 2004), and a
6.63-GHz (C band) sensor with a 159-km footprint on
the Scanning Multichannel Microwave Radiometer
(SMMR), from October 1978 to August 1987. More
recently, the lowest frequency available radiometric
measurement was at 19.3 GHz from the Special Sensor
Microwave Imager (SSM/I), which has been a part of
the U.S. Defense Meteorological Satellite Program
(DMSP) since 1987. Currently, the Earth Observing
System (EOS) Aqua satellite, launched in May 2002,
has both 6.9- and 10.65-GHz channels as part of its
Advanced Microwave Scanning Radiometer-EOS
(AMSR-E), but severe radio frequency interference
(RFI) at 6.9 GHz has been detected, leaving its 10.65
GHz and TMI as the only readily available, low-fre-
quency microwave instruments.

This paper presents a 5-yr retrieval (January 1998
through December 2002) of soil moisture from the
TRMM Microwave Imager 10.65-GHz band sensor. It
is our expectation that this dataset, with its accompa-
nying data quality flags, will provide a unique dataset
for the research community in addressing the above,
and similar, science questions. Furthermore, this
dataset will assist in evaluating retrieved soil moisture
from AMSR-E.

Section 2 of the paper discusses the retrieval ap-
proach used in the study, and it utilizes the Land Sur-
face Microwave Emission Model (LSMEM) of Drusch
et al. (1999). The results of the retrievals are presented
in section 3, with fields of soil moisture across the
southern United States between 25° and 38°N lati-
tude for each TMI orbit. Because of the swath width of
the TMI sensor, complete coverage is not provided on
each orbit, and because of the TRMM orbit character-
istics, the overpass time and time between overpasses
varies for a particular location. In fact, because this
portion of the United States is near the top of the
TRMM orbit, locations are observed with a different
number of times during a 24-h period. Thus, we also
provide a daily soil moisture field where the retrieved
soil moisture from each orbit (with precipitated areas
masked out) is averaged. Section 4 discusses sources
of uncertainty in the retrieved soil moisture, and con-
ditions under which retrievals are not possible. With-
in the database these are indicated by a series of
quality control masks. The soil moisture dataset is to
be available through NASA Goddard Space Flight
Center (GSFC) Distributed Active Archive Center
(DAAC).
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2. Methodology and data sources

Despite comprehensive laboratory measurements
and field experiments, knowledge of retrieval model
parameters (e.g., fractional vegetation cover, vegeta-
tion water content) and inputs on the continental scale
are incomplete. Problems associated with collecting
these parameters and inputs include the following: (i)
Vegetation parameters vary significantly with classifi-
cation and season. In contrast, available measurements
were obtained from field experiments and are limited
to only a few vegetation types (Jackson and Schmugge
1991). (ii) Satellite sensor resolution is large compared
to the heterogeneity in the landscape. Nonlinear scaling
results in the need for “effective parameters” values
rather than measured physical values. (iii) Ancillary
data, specifically a source of surface temperature infor-
mation, as required for retrievals from single-channel
and single-polarization microwave sensors, are incom-
plete. Although remotely sensed infrared techniques
offer a sufficiently accurate source of surface tempera-
ture data at a variety of resolutions, surface tempera-
ture products are only available under cloud-free con-
ditions, while microwave soil moisture retrievals are
possible and desirable under cloudy conditions. In this
section, we review the retrieval algorithm used in this
study and introduce required data sources.

a. Land Surface Microwave Emission Model

The retrieval algorithm is based on a semiempirical
model for passive microwave brightness temperatures
observed at the TOA as proposed by Kerr and Njoku
(1990). The LSMEM comprises a set of alternative pa-
rameterizations for the key components, for example,
the dielectric constant of the soil, surface roughness, or
vegetation opacity (Drusch et al. 1999). A detailed de-
scription of the actual model configuration and the
components used for the TMI soil retrieval presented in
this study can be found in Gao et al. (2004). Beginning
with an initial estimation of soil moisture, the LSMEM
iteratively searches for the soil moisture value that
matches the observed brightness temperature best
(Gao et al. 2004). In the LSMEM formulation, the total
brightness temperature (7}, ) is a weighted average of
radiation originating from bare soil (7,) and from
vegetation covered soils (7Y, ,):

Tbv,p = Tau + e_TM(Tad + Tskye_Tal)(l - Sp)e_ZT*
te ™, Te " +T(1—w(1l—e ™)

X[1+1—e)e "1} (1)
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FiG. 1. The LSMEM output sensitivity to water fraction at the
surface temperature of 288 K.

Tbs,p = Tau + e_Tal(Tad + Tskye_q—m)(1 - Sp)
+ eiTmSpT\‘: (2)

Typ =0~ C)To, + CToy 3)

P

In these equations, T,, and 7,4 denote the upward
and downward contributions from the atmosphere, T
the soil temperature, 7, the vegetation temperature,
T, the cosmic radiation, &, the rough soil emissivity,
and o* the vegetation single scattering albedo, 7, and
7* represent the optical depth of the atmosphere and
the effective optical depth of the vegetation, respec-
tively, and C, is the fractional vegetation coverage. Sub-
script p indicates polarization dependency in the model
representation.

For continental applications, open water has to be
included. The brightness temperature of water (7, )
is computed using Eq. (4) with ¢, , being the water
emissivity and T,, the water temperature. As a result,
the simulated TOA brightness temperature has been
computed from

Towp = Tay + €™ (Tog + Tyye ™)1 —&,,)

+e g, T, 4)

w.ptws
Tb,p = (1 - Cv - Cw)Tbs,p + Cvav,p + CwThw,pa
®)

with Cy, as the fractional coverage of water. A sensi-
tivity test was carried out to simulate the brightness
temperatures for footprints characterized by different
water fractions and soil moisture conditions. Figure 1
shows the decrease in microwave brightness tempera-
ture as the fraction of surface water within a footprint
increases. A decrease is expected because the horizon-
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tally polarized water emissivity (e,,,) can be well below
0.5, while soil emissivity (g;,) at X band normally ranges
from 0.85 to 0.95. These results demonstrate that the
microwave emission contributions from water bodies
must be taken into account in order not to overestimate
volumetric soil moisture.

b. LSMEM resolution and inputs

The —3 dB footprint for TMI at X band is ~38 km
over the southern United States, with an oversampling
rate that results in adjacent footprint centers, which are
approximately 8-13 km apart, depending on the loca-
tion within the swath and the orbit. Because the sup-
porting database from the NLDAS project (Mitchell et
al. 2004) is produced at 1/8° spatial resolution, the TMI
brightness temperatures have been resampled to the
NLDAS grid using the nearest-neighbor technique. Be-
cause of the oversampling, interpolation would reduce
the observed spatial variability. The LSMEM model
inputs are listed in Table 1. All parameters and vari-
ables have been resampled to the NLDAS grid. Figure
2 shows some input fields across the United States, with
Fig. 2h displaying one TMI overpass. The most relevant
geophysical input parameters are discussed in the fol-
lowing paragraphs.

1) TMI X-BAND BRIGHTNESS TEMPERATURE

The TRMM satellite was launched in November
1997. One of the instruments on the satellite is TMI, a
dual-polarization passive microwave conical scanning
radiometer with an incidence angle of 52.8°, which op-
erates at 10.65, 19.4, 21.3, and 85.5 GHz. In this study,
the 10.65-GHz horizontally polarized brightness tem-
perature has been used to retrieve soil moisture. The
TRMM orbit and sensor swath result in spatial cover-
age between *=38° latitudes. For each day, about five
orbits overpass the southern United States at various
times (Bindlish et al. 2003).

2) ATMOSPHERIC CONTRIBUTIONS

At X band, the atmospheric contributions (optical
depth and atmospheric emission) are comparably small
with low temporal variability (Drusch et al. 2001). Con-
sequently, it is sufficient to apply a constant atmo-
spheric correction for the soil moisture retrieval pre-
sented in this study. A set of 3472 atmospheric tem-
perature and humidity profiles acquired from the
National Centers for Environmental Prediction
(NCEP) Eta Model Output Location Time Series
(MOLTS) dataset have been analyzed. They were col-
lected at 56 sites within Oklahoma (from 34° to 38°N in
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TABLE 1. LSMEM inputs.
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Input class Parameter/variable Value Data source Reference
Sensor information  Incident angle 52.8° Jackson and Hsu (2001)
Modeling frequency 10.65 GHz
TMI observation Horizontal T, Orbit data U.S. Department of Bindlish et al. (2003)
Agriculture
Atmospheric Optical depth 0.014 MOLTS/radiative transfer Drusch et al. (2001)
contribution Emitted 7, 6.0 K
Surface Sand fraction, clay fraction,  Spatially distributed STATSGO Miller and White
parameters and soil bulk density constants (1998)

Soil surface roughness
Vegetation coverage

Vegetation water content

Water coverage

Vegetation structure

0.3
Spatially distributed,

monthly
Spatially distributed,

monthly

Spatially distributed
constants
Constants based on

Choudhury et al. (1979)
NLDAS greenness

fraction (based on NDVI)
Calculated results based

on MODIS LAI and

land cover types
MODIS classification

Jackson and Schmugge

Chang and Wetzel
(1991)
Rodell et al. (2005)

Hansen et al. (2000)

parameter
Vegetation single
scattering albedo
State variable Surface temperature
hourly

classification
0.07

Spatially distributed,

(1991)
Average value according
to Pampaloni and Paloscia
(1986), Ulaby et al. (1983)
NLDAS/VIC output Liang et al. (1994,

1999)

latitude and from —97° to —98.5W° in longitude) dur-
ing July 1999. This region and period were used be-
cause of the large number of available MOLTS data
and because of the generally highly variable summer-
time humidity for which the atmospheric affects would
be most noticeable. For each of the profiles, the optical
depth and the brightness temperature of the atmo-
sphere were calculated at 10.65, 19.35, and 22.235 GHz
based on the gas absorption scheme described in
Drusch et al. (2001). Averaged values for T,y and T,,
from this dataset were used as LSMEM inputs for the
TMI retrieval.

3) SURFACE ROUGHNESS PARAMETER

For this parameter there is no robust data source
over large spatial domains. A constant value of 0.3,
which is typical for a medium rough surface, was se-
lected (Choudhury et al. 1979). The constant value does
not take into account the fact that /4 should scale with
wavelength (Choudhury et al. 1979) and vary with sur-
face type. However, setting a constant value is the most
widely used approach for accounting for the effects of
surface roughness on the modeled brightness tempera-
tures (Drusch et al. 2004). A sensitivity test over a
rangeland land cover shows that 10% uncertainty in
surface roughness will result in an error of about 3%
volumetric soil moisture.

4) VEGETATION STRUCTURE PARAMETER AND
VEGETATION SINGLE SCATTERING ALBEDO

The effective optical depth of the vegetation (7¥) in
Eq. (1) is the product of the vegetation structure pa-
rameter (b) and vegetation water content (W,) (Jack-
son and Schmugge 1991). The b parameter is a function
of the canopy type/structure, polarization, and wave-
length. However, studies in the literature on these de-
pendencies are far from being complete. An approxi-
mate parameterization over the United States was
made for the current investigation by assigning b values
to different vegetation classes according to Table 1 in
Jackson and Schmugge (1991). For vegetation types
without available b values (forest, woodland, and
shrub), the value of 0.7 at X band was assigned based
upon Fig. 4 in Jackson and Schmugge (1991).

In Eq. (1), the soil emission from below the canopy is
affected by the vegetation single scattering albedo (w*).
According to the literature (Pampaloni and Paloscia
1986; Ulaby et al. 1983), w* varies from 0.04 to 1.0. An
average value of 0.07, which is assumed to be polariza-
tion independent, was used for LSMEM input.

5) WATER FRACTIONAL COVERAGE

Figure 3 shows the statistics of fractional water cov-
erage for NLDAS grid boxes within our study area. It
has been derived from the NLDAS land cover data-
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F1G. 2. Examples of LSMEM data and inputs.

base, which draws from the 1-km Moderate Resolution
Imaging Spectroradiometer (MODIS) land cover data
developed at the University of Maryland (Hansen et al.
2000). These data were then reprocessed so that the
grid box value represents the water fraction of a TMI

X-band footprint. Although most areas have less than
1% water coverage, 11% of the total number of grid
boxes has a substantial water fraction of more than 5%.
According to Fig. 1, if the microwave emissions from
water bodies are ignored for grid boxes with 5% frac-
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0% water: 11113 pixels

>5% water: 1226 pixels

4~5% water: 202 pixels

3~4% water: 312 pixels
2~3% water: 501 pixels

1~2% water: 997 pixels

-

0~1% Water;§oo pixels

F1G. 3. Fractional area covered by water for the grid boxes
within the study area.

tional water, then the overestimation of the retrieved
soil moisture will be approximately 5%. Figure 2d
shows the fraction as a spatial map across the United
States.

6) SOIL TEXTURE

Soil texture information (sand fraction, clay fraction,
and bulk density) is required for calculating the dielec-
tric constant of wet soils. These data are obtained from
the State Soil Geographic (STATSGO) database
(Miller and White 1998) and were resampled to the 1/8°
grid. Both the water fraction and the soil parameters
(see Figs. 2a—d) are spatially heterogeneous but invari-
ant with time.

7) VEGETATION FRACTIONAL COVERAGE AND
VEGETATION WATER CONTENT

The monthly vegetation fractional coverage is avail-
able from the NLDAS database, and was calculated
from the normalized difference vegetation index
(NDVI) using (Chang and Wetzel 1991)

{1.5(NDVI —0.1) NDVI=0.547
veg =

32(NDVI - 1.08) NDVI>0547. ©

One example of vegetation fractional coverage is plot-
ted in Fig. 2e.

Vegetation water content (W), which contributes to
vegetation optical depth (%), was derived from the land
cover classification and monthly leaf area index (LAI),
using MODIS C-4 LAI available through Boston Uni-
versity. The vegetation water content was computed
using general relationships between LAI, foliar and
stem biomass, and estimates of their relative water con-
tent (Rodell et al. 2005). The vegetation water content
for July is shown in Fig. 2f.
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8) SURFACE TEMPERATURE

As explained in the introduction to section 2, the
retrieval algorithm used in this paper is based on a
single-frequency single polarization. Thus, physical sur-
face temperatures are required. To avoid the con-
straints of only clear-sky retrievals (i.e., if surface tem-
peratures derived from infrared measurements would
be used), the surface temperatures that will be used for
the retrieval are based on the Variable Infiltration Ca-
pacity (VIC) land surface scheme (Liang et al. 1994,
1999). Mitchell et al. (2004) provides a comparison
among NLDAS modeled surface temperatures, esti-
mates based on the Geostationary Operational Envi-
ronmental Satellite (GOES), and instruments deployed
as part of the Atmospheric Radiation Measurement
(ARM) Cloud and Radiation Test Bed (CART) facility
in the Southern Great Plains region of the United
States. This comparison showed absolute bias between
the models and the GOES or ARM CART data in the
range of 0.3-6.5 K and an rms difference of around 3.5
K. For VIC, the absolute bias ranged from 0.5 to 2.8 K,
depending on the season, and the rms of the difference
ranged from 3.3 to 4.3 K. A sensitivity test over range-
land land cover shows that 1-K error in surface tem-
perature results in an error of about 1% in the retrieved
volumetric soil moisture. The NLDAS system is run
hourly and the surface temperature that matched the
TMI overpass times was used in the retrievals for both
the soil temperature and vegetation temperature be-
cause the VIC LSM only has a single surface layer (see
Fig. 2g for an example field).

3. Results

a. Surface soil moisture retrieved for each TMI
orbit

Using the LSMEM and the parameters and inputs
described in section 2, soil moisture fields were re-
trieved on an orbit overpass basis from 1 January 1998
through 31 December 2002. As described earlier, up to
five overpasses may occur over the southern United
States on any particular day. Although the overpass
time varies during the day, the patterns and retrieved
soil moisture values from the different orbits are con-
sistent. Data quality masks, which help to indicate lo-
cations where we have low confidence in the retrieved
product, will be discussed in section 4.

b. Daily surface soil moisture composites

For many hydrological applications (e.g., providing
initial conditions for streamflow forecasting, crop moni-
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FIG. 4. (left) Daily total precipitation (mm) and (right) the second-day soil moisture increment (%) from 8 to
14 Jul 1999.

toring, etc.) soil moisture information is needed on a
daily basis. Because the TRMM orbits cover different
portions of the study area, a daily composite was made
by combining the retrieved soil moisture values from all
of the overpasses occurring during a day. When mul-
tiple overpasses occurred for a grid box, its daily aver-
age was computed from the multiple retrieved values.

Figure 4 presents a 1-week period (8 July to 14 July
1999) of the daily change in estimated soil moisture
(day,, — day,_,) compared to the daily precipitation
from NLDAS forcing during day,, ;. The main conclu-
sions from this comparison are as follows: 1) the soil
moisture changes are hydrologically consistent with the
precipitation in most areas, except for portions of the
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southeastern United States; 2) the soil moisture dry-
down in areas without precipitation is clearly evident;
and 3) the effects of large-scale irrigation can be seen in
areas like the central valley in California, where high
values of soil moisture are observed, without rainfall
occurring.

4. Quality control masks

We recognize that there are conditions under which
soil moisture cannot be accurately retrieved because of
the X-band sensor sensitivity, weather conditions, or
surface features. In this section, these error sources are
analyzed and masks are developed for quality control.
This allows the users of the dataset to access the final
soil moisture product and to apply the quality control
masks.

a. Precipitation mask

At X band, the sensor-observed brightness tempera-
ture is affected by falling precipitation (liquid or solid)
(Tsang et al. 1977). To avoid the complex impact of
falling precipitation, retrievals for grid boxes where it is
precipitating were removed using hourly stage IV pre-
cipitation data from the NLDAS data system. The
mask uses a 1-mm threshold for the hour of the satellite
overpass to determine whether it was precipitating.
This mask is applied to the orbit retrievals.

b. Vegetation sensitivity mask

In analyzing the retrieved soil moisture, we noted
that in some regions, particularly in the southeastern
United States, the soil moisture dynamics are not con-
sistent with the precipitation dynamics. Specifically,
most of these areas have consistently low soil moisture
values (less than 10% most of the time) with little vari-
ability. These results warranted further investigation.

To do the analysis, the 10.65-GHz polarization ratio
(T, /T, ) was studied. This ratio is almost indepen-
dent of surface temperature and thus its soil moisture
sensitivity mainly depends on land cover conditions.
The monthly average of the ratio for July 1999 is plot-
ted in Fig. 5a and the standard deviation is presented in
Fig. 5b. These images indicate that the polarization ra-
tios for the “consistently dry” areas in Fig. 5 are low
(high T, ;;) and vary slightly. The low variability con-
firms that the dynamics of the precipitation (and of the
subsequent soil moisture) is not being captured in the
brightness temperatures or polarization ratio, and thus
the soil moisture cannot be retrieved accurately.

A comparison between the above areas and a veg-
etation classification shows that the areas of low polar-
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ization sensitivity and dynamics are over forested re-
gions. In forested regions the vegetation optical depth
is large, and causes a high TOA brightness temperature
with little polarization (Ulaby et al. 1986). Conse-
quently, over the forests, the soil microwave 10.7-GHz
emission cannot penetrate the canopy and the vegeta-
tion brightness temperatures that are observed by the
satellite sensor are high resulting from the high emis-
sivity of the forest canopy (Ulaby et al. 1986). In the
absence of vegetation information, the retrieval model
would estimate consistently low soil moisture from the
constantly high observed brightness temperature. A
reasonable consistency is also observed between the
polarization pattern (Fig. 5a) and the vegetation water
content map (Fig. 2f). Accordingly, it is our assessment
that soil moisture retrievals for areas with heavy veg-
etation are not reliable and should be masked out. As
an aside, the emission from heavy vegetation also sug-
gests that subgrid-, small-scale patches of large trees, if
ignored as is the usual practice, will tend to increase the
average brightness temperature in a scene resulting in a
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FIG. 6. As in Fig. 5 but for Jan 1999.

lower mean retrieved surface moisture. This may ex-
plain part of the differences between the mean re-
trieved soil moisture and observation (shown in Fig.
10).
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Because vegetation mass varies seasonally, the polar-
ization ratio sensitivity analysis was computed for each
month. The results for January 1999 are shown in Fig. 6,
and a comparison of Figs. 5a and 6a shows an expanded
area with potentially good retrievals in January when
compared to July. We have used a monthly averaged
polarization ratio of below 1.02 and a standard devia-
tion less than 0.005 to determine areas where we feel
the vegetation effects prevent reliable retrievals.

c¢. Snow cover, frozen soil, and surface water
contamination mask

The current version of the LSMEM does not con-
sider the emission from snow-covered or frozen soil,
and cannot be used to retrieve soil moisture under
these conditions. Basically, when the soil is frozen the
algorithm for calculating wet soil dielectric constant no
longer holds. Thus, a daily frozen soil and snow cover
classification dataset, provided by the National Snow
and Ice Data Center (NSIDC) (Zhang et al. 2003), was
reprocessed to the NLDAS 1/8° grid and used as the
mask. This dataset, based on processing SSM/I data,
also identifies coastal areas (including those of large
lakes) where water contamination degrades any retriev-
als. These areas are masked out in our TMI dataset.
Figure 7 presents an image of the snow-, frozen soil-, and
water-contaminated areas for 1 January 1999.

d. Data availability

Figure 8 presents an example (for 1 January 1999) of
the retrieved soil moisture with all areas screened out
where the retrievals are suspect. To provide a synoptic
description of the data availability over the 5 yr, Fig. 9
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Fi1G. 8. Retrieved surface volumetric soil moisture (%) for 1 Jan 1999 with all quality
masks applied.

presents the percentage of days within a season when
the retrieved soil moisture passed all quality flags. In
the summer, the major factor influencing the retrieved
soil moisture is heavy vegetation; in the winter, the ma-
jor factor is snow cover and frozen soil. A full descrip-
tion of the available data product is presented in the
appendix.

5. Inmitial comparisons with Oklahoma Mesonet in
situ measurements

Historically the “validation” of remote sensing prod-
ucts consisted of comparisons to ground-based mea-
surements with the goal of having the former match the
latter. This approach to validation needs to be revised,
because too often the ground-based observations are
taken at different spatial and temporal scales than the
remote sensing measurements rendering them inappro-
priate for direct comparison. Nonetheless, it seemed ap-
propriate that some comparisons to in situ be provided
here.

The Oklahoma Mesonet (information online at
http://www.mesonet.org) is an operational environmen-
tal monitoring network that consists of 114 stations,
with at least one in each of the 77 Oklahoma counties.
From 1998, soil moisture point values at 72 stations at
depths of 5, 25, 60, and 75 cm are available. The volu-
metric soil moisture is estimated using a calibrated
change in soil temperature over time after a heat pulse
is introduced (heat dissipation sensor).

Figure 10 presents the Oklahoma Mesonet— and
TMI-retrieved soil moisture for the period of June—

October 2002, with Fig. 10a comparing the retrieved
soil moisture from the El Reno Mesonet site with the
corresponding grid box and Fig. 10b comparing the av-
erage “Mesonet-wide” soil moisture from the reporting
sites with the average TMI soil moisture of the grid
boxes overlaying those sites. Also shown is the El Reno
(Fig. 10a) or Mesonet average (Fig. 10b) daily precipi-
tation values. Qualitatively, the comparison show the
following: 1) in general at both scales, TMI and the
Oklahoma Mesonet soil moisture show good responses
to precipitation, while there are a couple of rainfall
events captured by TMI but not in the Mesonet site at
El Reno, for example, rainfall at the end of June and
around 20 July; 2) TMI-retrieved soil moisture has a
lower mean value and larger dynamic range and a faster
dry-down, which can be attributed to its shallower
(~0.5 cm) sensing depth as compared to the Mesonet
5-cm depth; and 3) the El Reno data show that the
sensor appears to have a lower bound on reported soil
moisture of about 22%, and that moisture saturation oc-
curs in the Mesonet but not in the TMI-retrieved values.

The daily average of the 72 Mesonet sites and TMI
data for the grid overlaying the Mesonet site was com-
puted to obtain a Mesonet-wide daily average soil mois-
ture value. This provides a regional daily soil moisture
estimate that should be more consistent with the ob-
serving scale of TMI. Basically, the comparison be-
tween the Mesonet-wide and TMI soil moisture time
series displays the same characteristics as the compari-
son for El Reno, except that the time series are
“damped,” resulting from the averaging of the 72 sites.
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FIG. 9. Percentage of time by season that the retrieved soil moisture passed all data quality flags: (a) MAM, (b) JJA, (c) SON, and
(d) DIF.

Table 2 provides for each year and over the 5-yr
dataset seasonal statistics for both the Mesonet-wide
average (OK_M) and the TMI-averaged (TMI) soil
moisture time series. These statistics include means, co-
efficients of variation, and correlation between OK_M
and TMI. Table 2 confirms the low variability in the Okla-
homa Mesonet data, whose seasonal coefficients of varia-
tion varies from a low of 0.018 in the December—January—
February (DJF) season to a high of 0.045 in June-July—
August (JJA), with March-April-May (MAM) being
0.030 and September-October-November (SON) be-
ing 0.040. For TMI these corresponding seasonal statis-
tics are 0.15 (DJF), 0.20 (MAM), 0.21 (JJA), and 0.18
(SON). The correlation between the Mesonet-wide soil
moisture and TMI average shows a strong seasonal
trend as well as large interannual variability. The sea-
sonal trend has the lowest correlation in winter (0.41 for
DJF) and highest in the autumn (0.74 in SON). It is
encouraging that for the three nonwinter seasons, the
correlations are greater than 0.50 for all years, with the
autumn (SON) being higher than 0.69. This shows a

remarkable correlation between the two datasets whose
observing techniques and scales are so different, and be-
tween two datasets that may appear at first glance are not
comparable. There is some concern regarding the large
interannual variability in the correlations, which will re-
quire further investigation. In a similar manner, the cor-
relations between the monthly soil moisture anomalies
(monthly soil moisture subtracted from its monthly aver-
age from the 5 yr) were computed between TMI and
Mesonet as 0.78, which confirms that at the monthly tem-
poral scale they covary well. Similar correlations between
the Mesonet monthly rainfall anomalies and Mesonet
(TMI) soil moisture anomalies resulted in correlations of
0.68 (0.54), again demonstrating the good correspondence
between the TMI-retrieved soil moisture and Mesonet
soil moisture. From these evaluations, we conclude that
the two datasets are comparable.

6. Summary

This paper describes the retrieval of soil moisture
across the southern United States from TMI X-band
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brightness measurements using the LSMEM of Drusch retrievals can be obtained is important if routine esti-
et al. (1999), augmented by including microwave emis- mates are to be retrieved. The paper describes the
sions from surface water bodies. Determining the re- available sources of information from which these pa-
trieval model parameters such that quasi-operational rameters can be estimated, as well as the reliability of

TABLE 2. Seasonal and annual statistics for Oklahoma Mesonet and TMI-retrieved soil moisture averaged over the 72 Mesonet sites.

Mean soil moisture Coefficient of Mean soil Coefficient of Correlation
(OK_M) variation (OK_M) moisture (TMI) variation (TMI) (OK_M, TMI)
DIJF 29.4 0.018 12.2 0.15 0.41
1998 30.9 0.008 13.9 0.17 0.75
1999 29.5 0.021 11.9 0.12 0.70
2000 27.9 0.029 10.1 0.13 0.24
2001 30.9 0.010 14.1 0.20 0.24
2002 27.7 0.024 11.1 0.12 0.13
MAM 28.5 0.030 14.5 0.20 0.60
1998 27.8 0.035 14.9 0.23 0.74
1999 29.1 0.034 15.6 0.18 0.62
2000 28.6 0.032 13.5 0.18 0.48
2001 28.7 0.029 14.8 0.17 0.59
2002 28.5 0.021 13.7 0.22 0.58
JIA 24.6 0.045 11.9 0.21 0.62
1998 22.6 0.034 10.1 0.22 0.42
1999 25.5 0.047 11.4 0.21 0.86
2000 25.9 0.066 12.3 0.18 0.52
2001 23.8 0.039 11.5 0.22 0.76
2002 253 0.039 14.3 0.21 0.56
SON 25.5 0.040 11.9 0.18 0.74
1998 27.0 0.041 13.2 0.22 0.75
1999 24.5 0.054 9.5 0.18 0.80
2000 25.1 0.031 12.0 0.16 0.73
2001 24.9 0.038 10.5 0.14 0.69

2002 26.1 0.035 14.2 0.19 0.71
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the data. For data such as soil texture, extensive data-
bases are available for the United States. For param-
eters such as the soil roughness parameter or the veg-
etation single scattering albedo, representative values
were used based on studies and field measurements
reported in the literature. Some parameters and inputs,
such as the land surface temperatures and atmospheric
microwave contribution to the TOA measurements
were derived from other models. In the case of land
surface temperature, this allowed the retrieval of soil
moisture under cloudy conditions when satellite IR-
based estimates are unavailable. The accuracy of sur-
face temperatures (Mitchell et al. 2004) is sufficient for
their use in the soil moisture retrieval algorithm. Fi-
nally, some parameter values are calculated from other
remote sensing products, such as monthly vegetation
water content and monthly vegetation fractional cover-
age. For this investigation, all of these inputs were re-
sampled to 1/8° grids to be consistent with the NLDAS
data assimilation data system.

Using the LSMEM retrieval model, a 5-yr soil mois-
ture dataset for each TMI orbit across the southern
United States was derived, and is provided as the level
1 data product. To make the data more suitable for
general applications, a level 2 product consisting of
daily fields compiled using the level 1b data, with av-
eraged soil moisture values for locations with multiple
TMI overpasses. The highest quality data product is the
level 3 product, in which areas of poor retrievals result-
ing from heavy vegetation, snow cover, frozen ground,
and water contamination are masked out. In analyzing
the soil moisture sensitivity over various vegetation
types, we conclude that only forested regions resulted
in failed retrievals, which is a better result than we
initially expected.

Initial comparisons with soil moisture estimates from
the Oklahoma Mesonet heat dissipation sensors, aver-
aged across 72 Mesonet sites, shows that the retrieved
TMI soil moisture product is comparable to the in situ—
estimated soil moisture values, with seasonal correla-
tions as high as 0.86, and with an average seasonal cor-
relation of 0.59. Comparisons during DJF were poorest
and SON had the best in term of overall seasonal com-
patibility. Though evaluating remote sensing results is
rather challenging, considering the different scales, rep-
resentative depths of the two datasets, the preliminary
comparisons indicate the TMI retrievals to be encour-
aging.

The TMI X-band-retrieved soil moisture described in
this paper serves as a long-term, continental-scale data
product available to the community for use in weather
and climate studies. Its use by the community will help
address science questions central to global water and
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energy studies, provide experimental data to test soil
moisture data assimilation systems, and explore the
usefulness in water resource applications like flood
forecasting and agriculture. Through such use, the com-
munity will better understand the potential uses for soil
moisture products based on NASA’s Aqua’s AMSR-E
and the planned Hydrosphere State (HYDROS) L-
band microwave mission.
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APPENDIX

Available Data Products

The following retrieved soil moisture and related
data quality products are being provided to the NASA
GSFC DAAC:

e Level 1: Level 1 provides the retrievals for each orbit,
with level la being the soil moisture retrieved for
each TMI overpass, using the LSMEM (Gao et al.
2004), without consideration of the retrieval quality
considerations discussed in section 4. Level 1b is the
same as level la but with the precipitation masks
applied. The size of each is ~1.9 GB.

e Level 2: Level 2 provides daily averaged fields using
level 1b data with averaged soil moisture values for
locations with multiple TMI overpasses on that day
that passed the active precipitation quality flag (see
section 4a). The size is ~377 MB.

e Level 3: Level 3 provides daily-averaged quality-
screened fields. Level 2 data fields with areas
screened out because of retrieval concerns from
heavy vegetation, snow cover, and frozen soil (see
sections 4b and 4c). The size is ~377 MB. The quality
control data for each condition (heavy vegetation,
snow cover, frozen soil, and water contamination) is
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provided. The size for the each heavy vegetation
masks is 207 KB, and there is one for each month.
The size for the snow cover, frozen soil, and water
contamination mask files is 377 MB.

The data format is binary Little-Endian, 4-bytes for
each grid box, with 464 columns by 112 rows. Areas
masked out have a value of 0; areas where there are no
TMI retrievals have a value of 9.999 X ¢?°. All retrieved
soil moisture values are greater than 0 so no conflict
with the mask files will occur.
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