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[1] This study identifies soil moisture spatial variability
patterns using measurements across different extents (i.e.,
field, watershed, and basin) and depths (i.e., from surface to
root zone profile) from 18 different soil moisture field
experiments. The spatial variability patterns are well
represented by negative exponential functions between the
mean and the coefficient of variation of soil moisture.
Principal component analysis demonstrates that rainfall
and topography explain surface soil moisture variability
changes as soils dry, while soil parameters control
the maximum relative variability. Soil moisture’s relative
variability typically decreases as sampling extent increases,
supporting the power law decay function proposed by
Rodriquez-Iturbe et al. (1995). The finding that soil
moisture relative variability increases as soil depth
increases is consistent with an earlier study (Choi and
Jacobs, 2006). These common soil moisture variability
patterns can provide a feasible methodology to validate
land surface models and to estimate variability across
extents from mean soil moisture values. Citation: Choi, M.,

J. M. Jacobs, and M. H. Cosh (2007), Scaled spatial variability of

soil moisture fields, Geophys. Res. Lett., 34, L01401, doi:10.1029/

2006GL028247.

1. Introduction

[2] Knowledge of spatial soil moisture variability may
provide the blueprint for future ground-based experiments
and networks [Famiglietti et al., 1999]. Moreover, its
variability information is very crucial to understand and
improve the parameterization for land surface hydrologic
modeling [Giorgi and Avissar, 1997]. However, soil mois-
ture variability is not well understood over a range of areal
extents and depths or across sites [Famiglietti et al., 1999;
Martinez-Fernandez and Ceballos, 2003; Jacobs et al.,
2004]. Although numerous studies have characterized soil
moisture, there is no agreement as to whether soil moisture
variability is positively [Famiglietti et al., 1998; Martinez-
Fernandez and Ceballos, 2003] or negatively [Famiglietti et
al., 1999; Hupet and Vanclooster, 2002] correlated to mean
soil moisture content.
[3] The spatial soil moisture variability is mainly affected

by physical properties such as climate, soil texture, vegeta-
tion, and topography in natural catchment or agricultural
land [Mohanty and Skaggs, 2001]. Jacobs et al. [2004] and
Mohanty and Skaggs [2001] concluded that topography is a
crucial physical factor to understand surface soil moisture

variability. Teuling and Troch [2005] pointed out that soil
and vegetation may be important factors that increase or
decrease soil moisture spatial variance. They concluded that
a simple soil moisture model provides a preliminary link
between physical processes and statistical variability pat-
terns. Choi and Jacobs [2006] also concluded that a simple
physical model provides insight to statistical relationships
necessary to disaggregate physical land surface model
predictions. Additionally, soil moisture variability may
differ by spatial extent or scale [Crow and Wood, 1999].
[4] The objective of this study is to identify common

patterns among soil moisture statistics across a variety of
landscapes. Specifically, the relationships between mean
soil moisture and spatial variability of soil moisture mea-
surements are quantified. Spatial variability patterns are
examined in light of local physical properties including
climate, soil, topography, extent, and vegetation. This study
differs from previous studies in that it 1) brings together
measurements from 18 different experiments across the
world, 2) includes both surface and root zone soil moisture,
and 3) uses multivariate statistics to identify the effect of
physical properties on soil moisture spatial variability.

2. Study Region

[5] Table 1 identifies the 18 data sets (from 9 distinct
field experiments) used in this study and provides detailed
information for each study region and experiment.
Additional information is available from the references
listed in Table 1. Thirteen of the soil moisture data
sets were obtained from the Southern Great Plains 1997
(SGP97) experiment and Soil Moisture Experiments 2002
(SMEX02), 2003 (SMEX03), 2004 (SMEX04), and 2005
(SMEX05) [Crow and Wood, 1999; Jacobs et al., 2004;
Bosch et al., 2005; Cosh et al., 2006; Choi et al., 2005].
SMEX are a series of soil moisture field experiment con-
ducted annually from 2002 to 2005 (SMEX02 � SMEX05)
in Iowa, Georgia, Alabama, Oklahoma, and Arizona. Ad-
ditional data sets are from Florida, Belgium [Hupet and
Vanclooster, 2002], and Spain [Martinez-Fernandez and
Ceballos, 2003]. The sites are predominantly agricultural
lands with some forests, pastures, and clear cuts. Eleven
data sets have only surface soil moisture measurements
from approximately 0–6 cm. The remaining data sets
include a profile of measurements in the root zone. All
locations have regular sampling spaces determined by each
field experiment plan and were sampled using in-situ
devices, except the Iowa basin (Data ID E) which uses
Polarimetric Scanning Radiometer (PSR) instrument. The
sampling data of Data ID B, E, J, and Q have field scales
(�800 m). In each field, fourteen soil moisture sampling
were averaged. With these four exceptions, the sample sizes
or scales (i.e., point scale) are comparable. However, the
extent of sampling ranges from field to basin. The extent of
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scale triplet is defined as overall sampling domain [Bloschl,
1996].

3. Methods

[6] Statistical moments of soil moisture measurements,
mean and coefficient of variation, were calculated by site,
soil depth, and time. Jacobs et al. [2004] quantified the
negative relationship between the surface mean soil mois-
ture content and the coefficient of variation using an
exponential fit for four fields from SMEX02. The coeffi-
cients of variations were calculated by the ratio of standard
deviation of soil moisture to mean soil moisture. Exponen-
tial fits CV = AeBq between mean soil moisture and
coefficient of variation were conducted using observed
standard deviation of soil moisture and temporal average
standard deviation of soil moisture by site and soil depth.
Comparisons between paired exponential fits using ob-
served standard deviation of soil moisture and temporal
average standard deviation of soil moisture at each site
allow us to examine how fitting parameters, A and B, are
significantly different from fitting parameters, A and B,
using constant standard deviations.
[7] A principal component analysis (PCA) was used to

identify which physical properties were significant to un-
derstand hydrologic variability and how major principal
components were related to surface soil moisture fitting
parameters, A and B. The PCA is a multivariate statistics
technique for data reduction and deciphering patterns within
large sets of data [Farnham et al., 2003; Syed et al., 2004].
It describes the variance-covariance structure of a number of
variables by a few linear combinations of given variables
[Johnson and Wichern, 2002]. The maximum quantity of
variance is explained by the first principal component (1st
PC). Detailed descriptions for the PCA can be found in
Johnson and Wichern [2002].
[8] For this study, the PCA was applied using standard-

ized variables to ensure the same weight of each different
physical parameter. Normalized extent, annual rainfall, soil
porosity, wilting point, field capacity, percentage sand, leaf
area index (LAI), and maximum difference of elevation for
nine sites having sufficient physical parameters were used to
conduct the PCA analysis (Table 1).
[9] Correlation coefficients between the first three prin-

cipal components and the physical properties were calcu-
lated to quantify the physical variables’ importance for the
principal components. Correlation coefficients between the
first three principal components and the fitting parameters,
A and B, were also conducted to identify how the principal
components are related to fitting parameters.

4. Results and Discussion

[10] Figure 1 shows the relationships between the mean
soil moisture and the coefficient of variation of soil moisture
by data sets and measurement depth. Figure 1 also shows
superimposed lines derived from a postulation that soil
moisture has constant standard deviations (i.e., standard
deviation values range from 1 to 13). The coefficient of
variation exponentially decreases as the mean soil moisture
increases for all data sources except the Duero surface data.
This result is consistent with the previous studies at indi-

vidual sites [Famiglietti et al., 1999; Choi and Jacobs,
2006].
[11] Table 2 lists the exponential fit CV = AeBq including

parameters A, B, and the correlation. The exponential fit is
recognized as an efficient way to explain soil moisture
variability patterns as function of mean soil moisture. The
fitting parameters A and B describe the relative variability
range and the variability change as related to mean soil
moisture contents, respectively. Thus, the parameter A is
related to the maximum relative variability, while the
parameter B is related to the slope of the relative variability.
The fitting parameters, A and B, vary by site and depth. The
average values of A, B, and R2 for all regions were 1.690,
�0.061, and 0.656, respectively. All sites showed very
strong correlations except Arizona (SMEX04), Boone
County, and Duero. The magnitudes of A and B typically
increase as the spatial extent decreases. For example, B
values for surface measurement range from �0.091 to
�0.061 for fields (0.64 km2) and from �0.037 to �0.001
at watershed (100 km2) and basins (5000 km2), respectively
in SMEX02. This result complements Rodriquez-Iturbe et
al.’s [1995] finding that the soil moisture variance
decreases, according to a power function, as the aggregation
sampling scale increases. Here, we found that extent also
follows the power decay function. Crow and Wood [1999]
found that soil moisture variability differed by extent and
scale during the SGP97. This result is consistent with our
finding that spatial extent and scale influence relative
variability changes because the SGP97 fields (i.e., point
scale) have a greater relative decrease in variability than the
watersheds (i.e., field scale (�800 m)) (Table 2). Similarly,
the PSR observations (Data ID E) had extremely low
variability as compared to other data sets (Table 2). This
is likely due to the relatively coarse scale and large extent.
[12] The absolute values of A and B also increase as soil

depth increases. The surface has the least negative relation-
ship (i.e., A and B parameters closest to zero). These results
extend Choi and Jacobs’ [2006] finding that the surface has
a smaller decrease in variability per change in soil moisture
than the deeper layers.
[13] Matched pair t-tests, commonly used to identify

differences in paired observations, were conducted to de-
termine if the exponential models using site specific con-
stant standard deviation values differed from models
derived from the observations. The null hypothesis, Ho

was that the mean differences between a fitting parameter,
A or B, from observational derived exponential model and
that determining by fitting the average standard deviation
were identical. Separate analyses were performed for each
parameter, first using the 16 surface models parameters,
then the 30 root zone models parameters (Table 2). At the
surface, there was no significant difference for either A, or
B (p values are 0.194 and 0.086, respectively). However, for
the root zone, there was a significant difference for both the
A and B parameters (p values are 0.002 and 0.007,
respectively). These results indicate that root zone soil
moisture spatial variability is more heterogeneous than
surface soil moisture spatial variability and its variability
across extents cannot be captured by the average standard
deviation of soil moisture. That the p value of B at surface
comparison also indicates the average standard deviation

L01401 CHOI ET AL.: SPATIAL VARIABILITY OF SOIL MOISTURE L01401
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Figure 1. Relationship between mean soil moisture and coefficient of variation (a) SMEX02 Basin � (r) SGP97 Field
(LW21) (Note: Superimposed lines are derived from constant standard deviation values, 1, 3, 5, 7, 9, 11, and 13).
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may be problematic to represent soil moisture variability at
surface and root zone.
[14] Differences of soil moisture variability among sites

are quantified as the standard deviation of soil moisture. The
PCA was used to characterize these differences related to
physical properties including climate, soil, and vegetation
and to identify how the fitting parameters are related to
physical properties. The first three PCs, collectively,
accounted for 93.15% of the total variance (Table 3),

capturing most of physical properties’ variability. Table 3
also shows that the most important controlling parameters
for the first PC are porosity, wilting point, and field
capacity, all soil factors. The second PC was equally well
correlated with annual rainfall and the maximum difference
of elevation. The third PC, highly correlated with extent,
explains less of the variability. Famiglietti et al. [1995] and
Syed et al. [2004] found that precipitation and potential
evaporation were the major principal component to under-

Table 2. Regression Relationship Between the Coefficient of Variation and the Mean Soil Moisture Where CV = AeB
q

Sites Data ID Extent (km2) Depth A B R2

SMEX02 A Basin (5000) surface 0.555 �0.036 0.729
B Watershed (100) surface 0.474 �0.037 0.341
C Field WC11 (0.64) surface 0.800 �0.061 0.801

5 cm 2.066 �0.092 0.914
15 cm 1.841 �0.087 0.904
25 cm 1.918 �0.086 0.815

D Field WC13 (0.64) surface 1.581 �0.091 0.811
5 cm 2.858 �0.100 0.870
15 cm 4.019 �0.110 0.881
25 cm 9.751 �0.138 0.851

E Basin (5000) surface 0.372 �0.001 0.003
SMEX03 F Basin (3750) surface 1.637 �0.087 0.924

G Watershed (334) surface 0.885 �0.061 0.807
20 cm 1.539 �0.091 0.921
30 cm 0.914 �0.054 0.585

SMEX04 H Basin (3750) surface 0.943 �0.058 0.569
I Watershed (150) surface 0.548 �0.021 0.202

SMEX05 J Watershed (100) surface 0.795 �0.066 0.845
K Watershed (100) surface 0.873 �0.055 0.795

5 cm 2.077 �0.085 0.927
10 cm 2.445 �0.089 0.921
15 cm 2.863 �0.091 0.914
25 cm 8.152 �0.124 0.896
50 cm 3.069 �0.108 0.619

Florida L Field Mize (0.01) surface 0.563 �0.018 0.423
M Field Donaldson (2.5 � 10�5) surface 0.456 �0.049 0.897

Boone County, Iowa N Field (2 � 10�3) 0–15 cm 0.240 �0.017 0.172
15–30 cm 0.242 �0.003 0.090
30–45 cm 0.359 �0.011 0.378
45–60 cm 0.271 �0.004 0.028
60–75 cm 0.381 �0.018 0.304
75–90 cm 0.473 �0.021 0.868
90–105 cm 0.563 �0.024 0.820
105–120 cm 0.619 �0.027 0.703

Louvain-la-Neuve
(Belgium)

O Field (6.3 � 10�3) 0–20 cm 1.436 �0.094 0.956
25 cm 0.925 �0.079 0.967
50 cm 1.511 �0.100 0.917
75 cm 4.618 �0.123 0.937
100 cm 5.136 �0.109 0.951
125 cm 2.206 �0.085 0.949

Duero (Spain) P Basin (1285) surface 0.423 0.000 0.000
25 cm 0.497 �0.007 0.023
50 cm 0.590 �0.010 0.070
100 cm 0.557 �0.014 0.180

Oklahoma, US
(SGP97)

Q Watershed (610) surface 1.035 �0.061 0.789
R Field LW21 (0.64) surface 1.681 �0.084 0.921

Table 3. Correlation Coefficients Among the Principal Components, Physical Property, and Fitting Parameters, A and B, Where

CV = AeB
q

Principal
Component

Variance
Explained

Correlation by Physical Property
Correlation by

Fitting Parameter

Extent Porosity Rainfall Wilting point Field Capacity Sand LAI
Max Diff
Elevation A B

1st PC 50.33 �0.613 0.978 �0.203 0.982 0.964 �0.802 0.203 �0.277 �0.348 0.178
2nd PC 32.60 �0.265 �0.097 0.934 0.088 �0.130 0.326 0.818 �0.925 0.235 �0.389
3rd PC 10.21 0.718 �0.036 0.097 0.089 0.012 �0.424 0.319 0.035 �0.168 0.101
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stand the spatial variability of hydrologic cycle in regional
scale. Our results are consistent with these previous studies
in that precipitation is one of the major principal compo-
nents. In addition, our results provide another insight that
soil related factors may be one of the most significant
physical factors to understand hydrological variability.
[15] The correlation between the major PCs and the

surface soil moisture model fitting parameters shows that
the A fitting parameter was most highly correlated with the
first PC (Table 3). This indicates that soil parameters control
the maximum coefficient of variation. The B fitting param-
eter was most strongly correlated with the second PC. The
relative change in the soil moisture coefficient of variation
with respect to mean moisture is better explained by rainfall
and topography. Our results can provide additional insight
to Jacobs et al. [2004] and Mohanty and Skaggs [2001]
findings that topography was the most important factor to
understand surface soil moisture structure for the SMEX02
and SGP97 experiment. That they found soil related factors
to be significant during inter-storm periods is supported by
the correlation between soil properties and the A parameter,
which controls the relative variance under dry conditions.
[16] While the correlation of fitting parameters with

average physical parameters across fields is likely signifi-
cant, the correlation coefficient values is relatively low.
Future studies should consider the within extent variability
of spatially-distributed physical parameters to refine the
current findings.

5. Conclusion

[17] The relationships between mean soil moisture and
coefficient of variation are clearly explained by an expo-
nential fit for a profile of soil moisture measurements. The
magnitude of variability is dominated by soil factors.
Rainfall and topography characterize how variability
changes with mean surface soil moisture. Our statistical
variability information is essential to identify appropriate
statistical distributions and physical parameters for land
surface hydrologic modeling over a range of areal extents
(i.e., from sub-grid to whole grid). Further, the information
on proper statistical distributions and parameter values can
be used to validate land surface models’ ability to charac-
terize heterogeneity effects by extent, scale, and soil depth.
Specifically, the statistical information about the fitting
parameters A and B can be used to refine probability density
function (PDF) approaches for SVAT (Soil-Vegetation-
Atmosphere Transfer) modeling efforts to represent surface
heterogeneity.
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