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a b s t r a c t

This study assessed fecal coliform contamination in theWachusett Reservoir Watershed in

Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are

one of the major water quality parameters of concern. The bacteria subroutine in SWAT,

considering in-stream bacteria die-off only, was modified in this study to include solar

radiation-associated die-off and the contribution of wildlife. The result of sensitivity

analysis demonstrates that solar radiation is one of the most significant fate factors of fecal

coliform. A water temperature-associated function to represent the contribution of beaver

activity in the watershed to fecal contamination improved prediction accuracy. The

modified SWAT model provides an improved estimate of bacteria from the watershed. Our

approach will be useful for simulating bacterial concentrations to provide predictive and

reliable information of fecal contamination thus facilitating the implementation of effec-

tive watershed management.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction DeLuca, 1999; Gerba, 2000; Guber et al., 2006; Servais et al.,
Freshwater resources are susceptible to various fecal

contaminations. Fecal coliform, also known as thermotoler-

ant coliforms (Ashbolt et al., 2001), are a subgroup of total

coliforms associated with fecal contamination. Most fecal

coliform bacteria are not pathogenic, but they indicate the

possibility of the presence of microbial pathogens, which are

detrimental to public health (Noble et al., 2003). Fecal coliform

sources include: agricultural runoff, sewage, and wild and

domestic animal feces (Howell et al., 1995; Alderisio and
0.
.-H. Park).

ier Ltd. All rights reserve
2007; Cho et al., 2010a). Another potential source of fecal

contamination is the release of fecal coliform from stream-

beds. Previous studies have demonstrated that sediments can

contain one to three orders of magnitude more fecal coliform

than the overlying water column (Goyal et al., 1977; Doyle

et al., 1992; Buckley et al., 1998; Crabill et al., 1999; Smith

et al., 2008; Rehmann and Soupir, 2009; Cho et al., 2010a;

Pachepsky and Shelton, in press).

Several studies found that the levels of fecal coliform are

substantially affected by meteorological conditions (Gannon
d.
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and Busse, 1989; Marsalek and Rochfort, 2004; Paul et al., 2004;

Petersen et al., 2005; Tani et al., 1995; Kim et al., 2007, 2010;

Cho et al., 2010b). Previous studies demonstrated that solar

radiation has a substantial influence on the survival of fecal

coliform in natural waters (Bellair et al., 1977; Mancini, 1978;

Fujioka et al., 1981; McCambridge and McMeekin, 1981; Auer

and Niehaus, 1993; Sinton et al., 1999, 2007; Cho et al.,

2010b). Mancini (1978) found a strong relationship between

die-off rates and solar radiation from in-situ studies. Solic and

Krstulovic (1992) observed an increase in die-off rate in

response to high intensity of solar radiation in laboratory

experiments. Cho et al. (2010b) reported that in-stream levels

of fecal coliform are sensitive to solar radiation and therefore

the solar radiation intensity is one of control factors to model

fecal coliform in surface waters.

Modeling, in conjunction with laboratory experiments and

field observations, can help improve the understanding of the

fate of fecal coliform in water. In addition, this approach can

be used to provide predictive decision-support information for

effective public health management. The Soil and Water

Assessment Tool (SWAT), awidely usedwatershedmodel that

operates on a continuous daily time-step, was further

expanded by adding a bacteria module (Sadeghi and Arnold,

2002). Baffaut and Benson (2003) used the bacteria module to

predict flow rates and fecal coliform concentration. Parajuli

(2007) and Parajuli et al. (2009) applied this module to

modeling nutrient and fecal coliform in two different sub-

basins in Kansas. Coffey et al. (2010) used the original

version of the SWAT to predict fecal coliform in Irish catch-

ments, showing satisfactory prediction accuracies in the

calibration step. In addition, the SWAT bacteria module was

modified to consider streambed fecal coliform release and

deposition (Kim et al., 2010). The effect of solar radiation on

bacterial die-off, however, has not been considered in simu-

lations of fecal coliform concentration in a water body.

The objectives of this study are (a) to develop and evaluate

a solar radiation-associated bacteria module in the SWAT

model and (b) to calibrate and validate the model to predict

fecal coliform concentrations. This will provide an under-

standing of the fate of bacteria, which may lead to the

implementation of more effective management decisions.
2. Materials and methods

2.1. Study area

TheWachusett Reservoir is one of the primary drinking water

sources to the residents of the Greater Boston area in Massa-

chusetts. The Stillwater River is one of the two largest

tributaries of the Wachusett Reservoir and drains approxi-

mately 30% of the watershed (Fig. 1). The basin has a very low

percentage of impervious cover (<10%) and high percentage of

protected land with active watershed protection program in

place.

2.2. Bacteria module in SWAT model

In this study, the upgraded SWAT bacterial module (Kim et al.,

2010) was modified by adding the solar radiation-associated
die-off. Fig. 2 shows the proposed in-stream bacteria algo-

rithm in the SWAT model, including resuspension of fecal

coliform and die-off by solar intensity. When current sedi-

ment concentration is less than the maximum sediment

concentration, resuspension of sediment will occur. Other-

wise, sediment deposition will occur. Total die-off is calcu-

lated by summing the base mortality, removal by deposition,

and die-off due to solar radiation.

Previous studies had used solar intensity and temperature

to estimate bacterial die-off (Mancini, 1978; Chapra, 2007; Cho

et al., 2010b). The current version of SWAT does not include

the effect of solar intensity on die-off rate. The bacteria in-

stream module (rtbact.f) was modified by adding a new

parameter (SOLLPCH) to observe the effect of solar intensity,

and also to improve prediction accuracy. This parameter has

been widely used to estimate the bacteria die-off by solar

intensity (Mancini, 1978; Mayo, 1995; Canale et al., 1993; Xu

et al., 2002; Cho et al., 2010b). The natural die-off rate is

needed to calculate the total die-off rate. The natural, the die-

off rate at 20 �C can be calculated by using Equation (1) below:

K ¼ Kþ IðtÞ$Ks: (1)

where Kn is the natural die-off rate [d�1], which indicates

NATDIELP parameter in the model; I(t) is the solar radiation

[MJ m�2 d�1]; and Ks is the solar radiation coefficient [m2 MJ�1],

which represents SOLLPCH parameter in the model.

A first-order decay equation (Chick’s law) is used to

determine the amount of bacteria removed by die-off and re-

growth as described by Sadeghi and Arnold (2002). The total

die-off rate is estimated assuming that temperature is

constantly 20 �C. Therefore, the total die-off rate is re-

calculated by using a temperature adjustment factor as

follows:

Ct ¼ C0e
�KtAðT�20Þ (2)

where Ct is concentration at time t; C0 is initial concentration;

K is decay rate [d�1]; t is time [days]; A is temperature

adjustment factor [THBACT]; and T is temperature [�C].

When streambed sediments are resuspended, the amount

of the released bacteria (MB,res, CFU) is determined as follows:

MB;res ¼ MS;res$CB;B: (3)

where MS,res is the mass of resuspended sediment (ton); and

CB,B is the fecal coliform concentration in streambed sedi-

ments (CFU/g sediment). Here, sediment bacteria concentra-

tion (CB,B) has not beenmonitored in this watershed, but it was

estimated by calibration process within a range of reported

concentrations (Pachepsky and Shelton, 2011). The fecal coli-

form suspended in stream water (MB,W) are divided into free-

floating (MB,free) and sediment-associated bacteria (Bai and

Lung, 2005). The sediment associated fecal coliform are

further divided into bacteria attached to the suspended sedi-

ments (MB,sus) and fecal coliform attached to the deposited

sediments (MB,dep), as follows:

MB;free þMB;sus þMB;dep

MB;W
¼ 1þ Kp$concsed;sus þ Kp$concsed;dep

1þ Kp$concsed;i
: (4)

where concsed,sus is the concentration of the suspended sedi-

ments; concsed,dep is the concentration of the deposited
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Fig. 1 e The land use and fecal coliform concentration in Stillwater River Basin.
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sediments; concsed,i is the initial concentration of sediment in

a stream segment; and Kp is the partitioning coefficient of

fecal coliform between the sediments and water (m3/ton or

mL/g). Detailed information on bacteria resuspension

module can be found in Pachepsky et al. (2006b) and Kim et al.

(2010).

MassachusettsDepartment of Conservation andRecreation

(DCR, 2010) found a significant beaver population downstream

of Stillwater River, which could be one of possible sources for

relatively high fecal coliform and conductivity. Beaver impact

on the water quality has been addressed in previous studies

(Maret etal., 1991;Harthun, 2000). Skinneret al. (1991) indicated

that variation of fecal coliform in a stream could be partially

explained by beaver activity. Fecal coliform concentration

could be affected by their feces and scoured bacteria from

streambeds in the basin. The effect of beaver activity was

simulatedbasedon theassumption thatbeaveractivity ismore

apparent in summer than that in winter, having a direct rela-

tion with temperature. A simple nonlinear equation was

applied

FL ¼ aA� Tb: (5)

where a and b are the coefficients; T is water temperature [�C];

and FL is fecal coliform loading due to beaver activity

[CFU d�1].
2.3. Data acquisition

GIS layers of digital elevation map (DEM), land use, stream-

lines, and ponds were acquired from Massachusetts Office of

Geographic Information (MassGIS, http://www.mass.gov/

mgis). The Soil Survey Geographic (SSURGO) database of the

U.S. Department of Agriculture (USDA) was used to charac-

terize the soil properties of the watershed (USDA, 2011). The

layer was converted by SSURGO processing tool (Arc GIS

extension) for the compatibility with the SWAT model

(Sheshukov et al., 2009). Grazing operations were assumed to

be one of the fecal contamination sources and livestock was

assumed to be evenly distributed in all land area in the

watershed. It is because that small size farms are randomly

spread out within the watershed and that the SWAT model is

a semi-distributed model which does not fully consider the

spatial distribution of bacteria sources. A GIS layer associated

with farm animal was obtained from MassDCR and used to

estimate fecal contamination loading in the basin. (See

supplementary information Table S1 that shows the total

manure production and the number of fecal coliform in

manure used in this study).

Daily measured data for precipitation, temperature, and

wind speed at the Worcester Regional Airport Station were

used in this study (NCDC, 2011; NESDIS, 2011). Since solar

http://www.mass.gov/mgis
http://www.mass.gov/mgis
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Fig. 2 e The proposed algorithm for determining resuspension, die-off by solar intensity, and natural die-off of fecal

coliform.
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radiation data were not available for the Worcester Regional

Airport Station, data from Kingston station which is the

closest (approximately 80 km distance) to the watershed were

used in this study.

Fecal coliform sampling program has been conducted at

15 stations by MassDCR (2010), as shown in Fig. 1 (MassGIS).

The 6-year data of flow rates, sediment, and fecal coliform

from 2004 to 2009 were used to calibrate and validate the

modified module of the SWAT. Flow rates from 2007 to 2009

were so varied that they were used to calibrate the module,

whereas flow rates from 2005 to 2006 were used to validate

the model. Data collected in 2004 were used for model

stabilization (spin-up period). The Latin Hypercube-One-

factor-At-Time (LH-OAT) method (Van Griensven et al.,

2006) was used to investigate parameter sensitivity of

the SWAT model. The objective function of sensitivity

analysis was set to be the sum of squared errors (SSE)

computed as differences between the observed and pre-

dicted flow rates. Ranking parameters from the sensitivity

analysis makes it computationally efficient to calibrate the

model with the most significant parameters only. The

degree of sensitivity S is defined using the LH-OAT (see

supplementary information). The auto-calibration tool

embedded in SWAT model, which is an automatic shuffled

complex evolution (SCE) optimization scheme, was applied

to calibrate the hydrologic module (Van Griensven et al.,

2006). The highly ranked parameters (S > 0.1) were used

to calibrate the hydrologic module of SWAT within their

default ranges, except for the watershed morphology

parameters using flow measurement at the Stillwater

monitoring station.
2.4. Model evaluation

Nash-Sutcliffe model efficiency coefficient (NSE) between the

predicted and observed data (Nash and Sutcliffe, 1970) was

used to evaluate model prediction accuracy with its criteria

proposed by Moriasi et al. (2007). Furthermore, the Wil-

liamseKloot test was used to compare themodel performance

for predicting fecal coliform concentration (Williams and

Kloot, 1953). The test has been widely used to identify the

best model between two (or more) models in various fields

(Brassard and Correia, 1977; Pachepsky et al., 2006a) using the

following equation:

�
Y � 1

2
ðY1 þ Y2Þ

�
¼ lðY2 � Y1Þ: (6)

where Y is the measurement, Y1 is the predicted valued by

model 1 and Y2 is the predicted valued bymodel 2, and l is the

slope of this relation. If the slope l is significantly different

from zero and positive, it demonstrates that model 2 is better

than model 1.
3. Result and discussion

3.1. The relationship between land use and fecal
coliform concentrations

Table 1 shows land use in the basin, which is dominated by

forest area (73.61%). This implies that the contribution of

wildlife in the forest area could be significant for the fecal

http://dx.doi.org/10.1016/j.watres.2012.05.057
http://dx.doi.org/10.1016/j.watres.2012.05.057


Table 1 e Land use in the Stillwater River Basin.

Land use Area [ha] Percentage [%]

Forest 5637.11 73.61

Pasture 212.19 2.72

Agriculture 271.75 3.49

Open land 231.01 2.97

Residential 581.60 7.46

Institutional 12.66 7.46

Commercial 14.00 0.18

Industrial 17.41 0.22

Transportation 42.41 0.54

Water 674.10 8.65

Table 2 e Soil properties in the Stillwater River Basin.

Properties Unit Value

Moist Bulk density [g cm�3] 1.04

Available water capacity [mm/mm] 0.18

Saturated hydraulic conductivity [mm/h] 139.06

Sand [%] 51.01

Silt [%] 31.67

Clay [%] 17.32

Table 3 e Sensitivity analysis results for hydrologic parameter

Parameter Min Max Rank S Value

CN2 35 98 1 3.75Eþ00 66.87 Initia

moist

CH_K2 0 150 2 1.61Eþ00 146.29 Effect

main

ALPHA_BF 0 1 3 1.43Eþ00 0.97 Basefl

SOL_Z �50 50 4 5.19E-01 e Depth

SMTMP 0 5 5 3.73E-01 0.00 Snow

TIMP 0.01 1 6 3.60E-01 0.87 Snow

SMFMN 0 10 7 2.78E-01 0.57 Melt

SMFMX 0 10 8 2.64E-01 1.84 Melt

SFTMP 0 5 9 1.87E-01 1.51 Snow

SURLAG 0 10 10 1.63E-01 0.13 Surfa

BIOMIX 0 1 11 1.39E-01 e Biolog

CANMX 0 15 12 1.36E-01 e Maxim

CH_N �20 20 13 1.35E-01 e Mann

SLOPE �50 50 14 9.93E-02 e Avera

ESCO 0 1 15 9.63E-02 e Soil e

SOL_AWC �50 50 16 9.56E-02 e Avail

(mm

SOL_ALB 0 1 17 4.94E-02 e Moist

SOL_K �50 50 18 4.58E-02 e Satur

GWQMN 0 5000 19 4.32E-02 e Thres

aquif

SLSUBBSN �50 50 20 1.60E-02 e Avera

RCHRG_DP 0 1 21 1.32E-02 e Deep

EPCO �50 50 22 9.78E-03 e Plant

GW_REVAP 0.02 0.2 23 1.56E-03 e Groun

GW_DELAY 0 100 24 5.80E-04 e Groun

REVAPMN 0 500 25 1.91E-04 e Thres

for pe

TLAPS �50 50 26 0.00Eþ00 e Temp

BLAI �50 50 27 0.00Eþ00 e Maxim
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contamination in this watershed. The combined fraction of

agricultural and pasture area is approximately 6%, which also

can be fecal contamination sources in the watershed. Fig. 1

shows the spatial variation of fecal coliform in the water-

shed with land use information. Fecal coliform concentration

downstream is greater than those upstream, which might be

related to significant beaver population downstream of the

Stillwater basin.

Table 2 shows soil texture and properties in the watershed.

The dominant soil texture is coarse loamy with higher

percentage of sand. It might result in low sediment bacteria

concentration, relatively high decay rate of bacteria and low

fraction of sediment-associated bacteria (Pachepsky, 2006b;

Garzio-Hadzick et al., 2010; Pachepsky and Shelton, in press).
3.2. Flow sensitivity and calibration

Table 3 shows 27 hydrologic parameters with their ranges for

the sensitivity analysis and calibration. The result shows that

the CN2 (initial SCS runoff curve number for moisture condi-

tion II) was the most sensitive factor to affect the SWAT

hydrologic cycle simulation for the watershed, and followed

by CH_K2 (effective hydraulic conductivity in main channel

alluvium), SURLAG (surface runoff lag coefficient), ALPHA_BF

(baseflow alpha factor-baseflow recession constant) and
s.

Definition Process

l SCS runoff curve number for

ure condition II

Runoff

ive hydraulic conductivity in

channel alluvium (mm/hr)

Channel

ow alpha factor-Baseflow recession constant Runoff

from soil surface to bottom of layer (mm) Groundwater

melt base temperature (�C) Soil

pack temperature lag factor

factor for snow on December 21(mm H2O/�C-day)
factor for snow on June 21 (mm H2O/�C-day)
fall temperature (�C) Channel

ce runoff lag coefficient Evaporation

ical mixing efficiency Soil

um canopy storage (mm H2O) Geomorphology

ing’s “n” value Runoff

ge slope steepness (m/m) Geomorphology

vaporation compensation factor Soil

able water capacity of the soil layer

H2O/mm soil)

Soil

soil albedo Evaporation

ated hydraulic conductivity (mm/hr) Snow

hold depth of water in the shallow

er for return flow (mm H2O)

Soil

ge slope length (m) Snow

aquifer percolation fraction Groundwater

uptake compensation factor Snow

dwater “revap” coefficient Snow

dwater delay time (days) Groundwater

hold depth of water in the shallow aquifer

rcolation to the deep aquifer (mm H2O)

Evaporation

erature lapse rate (�C/km) Snow

um potential leaf area index Groundwater
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SOL_Z (depth from soil surface to bottom of layer). The

sensitivity ranking of hydrologic parameters in this study

agreed with the sensitivity ranking in previous studies in that

the curve number CN2was usually ranked as either the first or

the second (Arnold and Allen, 1996; Srinivasan et al., 1998;

Spruill et al., 2000; White and Chaubey, 2005; Holvoet et al.,

2005; Van Griensven et al., 2006; Kim et al., 2010).

Predicted and observed flow rates in both the calibration

(2007e2009) and validation step (2005e2006) are compared in

Fig. 3. The results show acceptable prediction accuracy for

modeling flow rates (NSE > 0.5, Moriasi et al., 2007). However,

the model underestimated the peak flow values. The SWAT

model is limited when simulating the high peak flow (Kirsch

et al., 2002; Chu et al., 2004) because it only simulates daily

flow rates, when actual peak flows occur within hours

(Atkinson et al., 2003).

3.3. Sediment sensitivity and calibration

Table 4 shows the results of sensitivity analysis for sediment

modeling. CH_COV (Channel cover factor) and CH_EROD

(Channel erodibility factor) were identified as the first and

fourth sensitive parameters, respectively. Their contributions

were more significant than previous study by Kim et al. (2010,

16th and 17th respectively). These parameters are related to

the amount of sediment re-entrained to the stream, implying

that resuspension of sediment highly contributes to sediment

loading in the watershed. In addition, SPCON (Linear param-

eter for calculating the channel sediment routing) and SPEXP

(Exponent parameter for calculating the channel sediment

routing) were ranked the second and the fifth, respectively,

showing a strong contribution to sediment modeling. These

parameters are also indirectly associated with the re-

entrainment of sediment.

Sediment dynamics provides useful information for

modeling fecal coliform (Bai and Lung, 2005). Particularly,

resuspension and deposition of fecal coliform are directly

associated with sediment. The amount of resuspension and

deposition of sediment was calculated using SWAT in order to

predict resuspension and deposition of fecal coliform. (See
Fig. 3 e Observed and simulated daily flow ra
supplementary information Figure S1 that compares the pre-

dicted and observed sediment concentrations in both the

calibration and validation steps). The simulated concentration

slightly underestimated the sediment observation. Very low

levels of sediment were measured during the observation

period, even during rainfall events. Fecal coliform concen-

tration, however, showed relatively high levels up to 4000 cfu

100 mL�1 and fluctuated significantly, as shown in Figs. 4

and 5. This difference between sediment and bacteria

implies that the proportion of the particle-associated fecal

coliform is low in the watershed, which might be due to the

coarse soil texture (Garzio-Hadzick et al., 2010). In addition,

a series of dams constructed downstream has slowed the flow

of water and resulted in the deposition of large quantities of

sand and silt (MassDCR, 2010) because they tend to increase

residence time of the water body and decrease the stream

velocity. As shown in Table 2, the combined total percentage

of silt and sand is approximately 83%, implying low sediment

bacteria concentrationswith high decay rates (Garzio-Hadzick

et al., 2010). Coarse sediments may not provide sufficient

protection from the environment to allow the persistence of

a substantial concentration of bacteria (Pachepsky and

Shelton, in press). In addition, the coarseness of sediment

texture is directly related to a low partition coefficient of fecal

coliform between sediment and water as it has been shown

for soils (Pachepsky et al., 2006b). Mahler et al. (2000) have

reported 5e100% attachment rates of fecal coliform and

enterococci to particles in a karst area, showing a high vari-

ability. It is well known, however, that clay-dominant soil

results in higher partition coefficient of fecal coliform to

sediment (Pachepsky et al., 2006b). Consequently, sand-

dominated soil texture in the watershed may result in poor

bacterial habitat and low partitioning coefficient of bacteria to

sediment.

3.4. Fecal coliform sensitivity and calibration

The result of sensitivities of bacteria-associated parameters

was similar to the result of sediment because parameters

ranked from first to fourth were identical for both. However,
tes for model calibration and validation.

http://dx.doi.org/10.1016/j.watres.2012.05.057
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Table 4 e Sensitivity analysis results for bacteria and sediment.

Parameter Min Max Ranking Value Definition

Sediment Bacteria

CH_COV 0 1 1 1 0.50 Channel cover factor

SPCON 0.001 0.01 2 2 0.11 Linear parameter for calculating

the channel sediment routing

PRF 0 1 3 3 0.11 Peak rate adjustment factor for

sediment routing in the main channel

CH_EROD 0 1 4 4 0.22 Channel erodibility factor

ADJ_PKR 0 1 e e 1.00 Peak rate adjustment factor for

sediment routing in the subbasin (tributary channels)

BACT_SWF 0 1 e e 0.61 Fraction of manure applied to

land areas that have active colony forming units

BACTKDDB 0 1 e e 0.75 Bacteria partition coefficient in manure

BACTKDQ 150 200 e e 166.14 Bacteria soil partitioning coefficient (m3 mg�1)

BACTMIX 7 20 e e 18.31 Bacteria percolation coefficient (m3 mg�1)

BIO_EAT 10 100 11 16 46.34 Dry weight of biomass consumed daily [kg ha�1 day�1]

BIO_INIT 10 500 10 14 134.68 Initial dry weight biomass [kg ha�1]

BIO_MIN 10 300 8 9 33.00 Minimum plant biomass for grazing [kg ha�1]

BIO_TRMP 10 100 e 15 51.49 Dry weight of biomass tramped daily [kg ha�1 day�1]

CLAY 10 30 e 13 17.32 Percentage of clay in sediments [%]

FILTERW 0 2 7 10 0.50 Width of edge-of-field filter strip [m]

LAI_INIT 0 1 9 12 0.81 Initial leaf area index

NATDIELP 0 1 e 11 0.74 Natural die-off rate [1/day]

PHU_PLT 10 2000 e e 747.41 Total number of heat units or growing

degree days needed to bring plant to maturity [days]

SED_CON 10 10E3 e 5 50 Sediment bacteria concentration [CFU/g]

SPEXP 1 1.5 5 7 1.19 Exponent parameter for calculating

the channel sediment routing

USLE_P 0.1 1 6 8 0.11 USLE equation support practice factor

SOLLPCH 0 1 e 6 0.99 Solar intensity coefficient [m2/MJ/day]

WOF_LP 0 1 e e 0.15 Wash-off fraction for bacteria
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sediment bacteria concentration was ranked the fifth, which

implies that bacteria released from streambeds were signifi-

cant in this modeling despite its uncertainties. Pachepsky and

Shelton (in press) reported large variations in sediment

bacteria concentrations from different water bodies such as

lakes, rivers and streams. Generally, the variation of sediment

bacteria concentration was 2e3 times greater than the varia-

tion of bacteria inwater column. SOLLPCH, newly added to the

SWATmodel inorder to consider theeffectof solar intensityon

the die-off, was ranked the sixth, while NATDIELP was ranked

the eleventh.This result shows that the effect of solar intensity

on bacteria survival was more significant than natural die-off,

verifying our hypothesis on the SWAT bacteria module.

Themodifiedbacteriamodulehasbeencalibrated topredict

fecal coliform bacteria. Fig. 4(a) compares predicted and

observed fecal coliformconcentrations forbothcalibrationand

validation steps without considering beaver activity. The

prediction accuracy of the module is not satisfactory for

bacteria, showing reduced RMSEs in both calibration and

validation steps (Table 5). The module well predicts low

bacteria concentrations but shows a limitation to reproduce

peaks in bacteria concentrations. Fig. 4(b) compares the

observedandpredicted fecal coliformbacteria, considering the

contribution of wildlife. The model captured the seasonal

variation of measured bacteria concentration although the

accuracyof themodelwasnot substantially improved in terms

of theestimatedNSEvalue. Inaddition, themodeldidnot show

significant impact of non-point sources related to stormwater
runoff. Fig. 5 illustrates the relationships between simulated

and observed bacteria, flow rate, and water temperature,

which explain why the module had a limitation to reproduce

the peak bacteria. Simulated bacteria concentrations were

related to flow rates because storm events resulted in the

elevated fecal coliform concentrations (Kim et al., 2010).

Observed bacteria, however, show a better correlation with

water temperature rather than with flow rates, indicating the

annual periodicity during the observation period. MassDCR

(2010) reported that fecal coliform concentrations had been

relatively low during the winter and early spring; increased

during the late spring and summer; and remained elevated

concentrations through the fall. This could not be explained by

either surface runoff or resuspension induced by rainfall

intensity. Resuspension is not commonly occurring during

baseflowandno correlationwas reportedbetween the levels of

coliforms in sediments and in water column during baseflow

(Pachepsky and Shelton, in press). Therefore, the elevated

concentrations of fecal coliforms in this study are likely to be

explained by the influx fromwildlife or animal.

Beaver activity had been reported to be one of possible

fecal coliform sources in the watershed (Jellison et al., 2002;

MassDCR, 2010). Jellison et al. (2002) applied microbial source

tracking to identify the sources of fecal contamination and

found that the contamination was mainly caused by wildlife

and dairy farming especially in the summer. Another source

could be groundwater contamination from failed septic

systems (Tache, 2009; MassDCR, 2010). The temporal pattern
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Fig. 5 e Relationships among flow rates, water temperature and observed and simulated fecal coliforms. Note that the

simulated fecal coliform does not include the contribution of wildlife.

Fig. 4 e Observed and simulated values of fecal coliform for model calibration and validation; (A) without the temperature-

associated function, (B) with the temperature-associated function.
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Table 5 e Accuracy results of SWAT simulation.

Flow rate Sediment Fecal coliform without wildlife Fecal coliform with wildlife

RMSE [m3 s�1] NSE [�] RMSE [mg L�1] RMSE$102 [CFU] RMSE$102 [CFU]

Calibration 1.73 0.57 2.50 3.44 1.15

Validation 1.83 0.53 3.08 2.61 0.86

Note: that RMSE stands for Root-mean-squared error and NSE for Nash-Sutcliffe model efficiency.
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of the observed fecal coliform can be explained by the fact that

continuous bacteria input from groundwater could be diluted

by precipitation. Tache (2009) found that human-associated

bacteria in the Gate Brook mostly came from residential

areas. However, our result did not show correlation between

residential areas and fecal contamination. Figure S2 (See

Supplementary information) shows the result of the Wil-

liamseKloot test to identify the best model to predict fecal

coliform. The slope of the regression is 0.439 with an error of

0.020; the probability that the slope is not different from zero

is 0.001, which means that the hypothesis that the model was

enhanced by adding the temperature-associated function

cannot be rejected at the significance level of 0.001. Conse-

quently, the statistics clearly shows the improvement after

introducing the temperature dependencies (Eq. (5)).

Previous SWAT applications to fecal coliform shows

prediction accuracies ranged from �0.70 to 0.73 (Table S2 in

supplementary information; Baffaut and Sadeghi, 2009; Chin

et al., 2009). The NSE value from Coffey et al. (2010) was 0.59

using relatively small number of bacteria observations. Most

of the previous studies on modeling bacteria have been con-

ducted in pasture/grassland dominated watersheds. For

example, the pastures, grasslands and agricultural areas were

86% and 85e93% in Coffey et al. (2010)’s study watershed and

Parajuli et al. (2009)’s study watersheds, respectively. Our

study area consists mostly of forest and thereby the contri-

bution of wildlife could be greater compared to previous

studies. Parajuli et al. (2009) used animal road kill data to

estimate the contribution of wildlife to fecal coliform. This

method can only be applied to certain watersheds with a high

portion of transportation area without considering seasonal

behavior of wildlife. Kim et al. (2010) discussed insufficient

information of wildlife in a forest and pasture dominant

watershed, Pennsylvania. Therefore, the contribution of

wildlife and its seasonal effect should be considered in order

to accurately estimate fecal contamination.
4. Conclusions

This study provides a modeling approach to quantify sources

and sink of fecal contamination, which can provide predictive

information of microbial water quality. The modified SWAT

model considering the effect of solar intensity and wildlife

was applied to predict fecal coliform. The major findings in

this study are as follows:

1) The SWATmodel showed an acceptable accuracy to predict

flow rates in both the calibration and validation steps,

showing satisfactory NSE values.
2) Very low sediment concentrations found in both the model

predictions and measurements during the observation

period could be resulted from the coarse soil texture in the

watershed.

3) The sensitivity analysis results show the significant effect

of solar intensity on bacteria survival

4) Themodel prediction was improved by considering wildlife

contribution. This emphasizes the significance of wildlife

contribution to model fecal coliform in this watershed. For

more accurate simulations, sufficient information of wild-

life activity such as the number and the location of

beaver activity is needed to quantify its effect on fecal

contamination.

The SWATmodel can generally provide reliable simulation

of flow and pollution from a watershed and however it could

be improved by considering wildlife contribution to fecal

contamination. It could be improved by incorporating wildlife

database in the SWAT simulation for fecal coliform bacteria.

This study shows that modeling bacteria still suffers from

substantial uncertainty and insufficient information. This

study will provide predictive and scientific information for

improving surface water quality.
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