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a b s t r a c t

Knowing the survival rates of water-borne Escherichia coli is important in evaluating

microbial contamination and making appropriate management decisions. E. coli survival

rates are dependent on temperature, a dependency that is routinely expressed using an

analogue of the Q10 model. This suggestion was made 34 years ago based on 20 survival

curves taken from published literature, but has not been revisited since then. The objective

of this study was to re-evaluate the accuracy of the Q10 equation, utilizing data accumu-

lated since 1978. We assembled a database of 450 E. coli survival datasets from 70 peer-

reviewed papers. We then focused on the 170 curves taken from experiments that were

performed in the laboratory under dark conditions to exclude the effects of sunlight and

other field factors that could cause additional variability in results. All datasets were

tabulated dependencies “log concentration vs. time.” There were three major patterns of

inactivation: about half of the datasets had a section of fast log-linear inactivation followed

by a section of slow log-linear inactivation; about a quarter of the datasets had a lag period

followed by log-linear inactivation; and the remaining quarter were approximately linear

throughout. First-order inactivation rate constants were calculated from the linear sections

of all survival curves and the data grouped by water sources, including waters of agricul-

tural origin, pristine water sources, groundwater and wells, lakes and reservoirs, rivers and

streams, estuaries and seawater, and wastewater. Dependency of E. coli inactivation rates

on temperature varied among the water sources. There was a significant difference in

inactivation rate values at the reference temperature between rivers and agricultural

waters, wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes.

At specific sites, the Q10 equation was more accurate in rivers and coastal waters than in

lakes making the value of the Q10 coefficient appear to be site-specific. Results of this work

indicate possible sources of uncertainty to be accounted for in watershed-scale microbial

water quality modeling.

Published by Elsevier Ltd.
1. Introduction majority of E. coli strains are non-pathogenic, a strong corre-
Escherichia coli is commonly used to indicate the presence of

fecal contamination in water and, by extension, the possible

presence of pathogenic microorganisms. Although the vast
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lation has been observed between elevated levels of E. coli in

recreational water and occurrences of gastrointestinal disease

(U.S. EPA, 1986). Surface waters and, to some extent, ground-

water serve as both habitats and dissemination pathways for
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bacteria. Therefore, knowing E. coli survival rates is important

for assessing the severity of contamination that has occurred

and making appropriate management decisions. Existing fate

and transport predictive models, such as SWAT (Gassman

et al., 2007) and HSPF (Bicknell et al., 1997) account for E. coli

survival by estimating survival rates.

E. coli survival rates are known to be dependent on

temperature (Faust et al., 1975; Vasconcelos and Swartz, 1976;

Flint, 1987; Craig et al., 2004; Jamieson et al., 2004). Amultitude

of other environmental factors including pH (Presser et al.,

1998), salinity (Bordalo et al., 2002), predation (McCambridge

and McMeekin, 1980), streambed resuspension (Harmel

et al., 2010), and sunlight intensity (Davies and Evison, 1991;

Sinton et al., 2002) have also been found to affect E. coli

survival in waters; temperature, however, is usually viewed as

the major factor (Mancini, 1978; Flint, 1987).

The Q10 equation is often used to express the dependence

of biological rates on temperature (Reyes et al., 2008). Applying

this equation usually assumes applicability of the Chick law,

i.e., the first-order exponential die-off model (Chick, 1908).

The Q10 temperature coefficient is used to describe fractional

change in a biological rate in accordance with a 10 �C change

in temperature, since a given increment of temperature

change affects a reaction rate by a constant factor (Johnson

and Thornley, 1985). An analogue of the Q10 equation was

used by Mancini (1978) to obtain a single value for the

temperature coefficient, based on 20 published papers doc-

umenting coliform mortality rates at various temperatures in

various surface waters. Since then, many E. coli survival

studies have been performed; however, information from

these studies has not been analyzed using the Q10 equation or

the analogue proposed in the Mancini (1978) model. The latter

is being used in microbiological water quality modeling (e.g.

Parajuli, 2007; Coffey et al., 2010) without modifications.

The objective of this study was to evaluate the accuracy of

the Q10 equation as a model for the dependence of E. coli

survival on temperature in waters from various sources,

utilizing the majority of published data.
2. Materials and methods

2.1. Experimental data

Data was extracted from 70 peer-reviewed papers on E. coli

survival in water from various sources to assemble a database

of 450 survival datasets in coordinates “time vs. log concen-

tration.” Additional database information corresponding to

each dataset included author name(s), year of publication, E.

coli strain (if provided), water source name as given by the

authors, approximate inoculation concentration (if provided),

temperature, enumeration technique, and duration of the

experiment. The general characterization of the database is

provided in the Supplemental data.

In this study we focused on results of laboratory experi-

ments performed in the dark to exclude effects of sunlight and

variations in predation and nutrient contents. This criterion

provided a database of almost 170 datasets, which was over

eight times larger than the one used by Mancini (1978). E. coli

enumeration was done using growth media; therefore, the
decrease in E. coli concentration is referred to below as inac-

tivation rather than as die-off. The database was categorized

by groups e those containing waters of agricultural origin

(runoff, effluent ponds, catfish ponds), pristine water sources

(caves, springs), groundwater and wells, lakes and reservoirs,

rivers and streams, estuaries and seawater, and wastewater.

2.2. The Q10 equation and related models of temperature
dependencies of bacteria die-off and inactivation in waters

Temperature dependencies were established based on the

first-order inactivation rates kc, as defined by the Chick

equation (Chick, 1908):

C ¼ C0e
�kct (1)

which, after taking logarithms, becomes

ln C ¼ ln C0 � kct (2)

Here and below, t is time (days). We used decimal logarithms

to convert (2) into

log C ¼ log C0 � kt (3)

so the rate constant k would be related to kc simply as

k ¼ kc � log(e) ¼ kc � 0.4342.

In biological studies, the relationship between k and

temperature is most commonly defined via the Q10 tempera-

ture coefficient (Behradek, 1930) as

k
k�

¼ Q
ðTC�TC;�Þ=10
10 (4)

here, Q10 is a measure of the rate of change in the inactivation

rate as a consequence of increases in temperature by 10 �C

increments, where TC;� is the reference temperature, �C, k� is

the inactivation rate at the reference temperature, k is the

inactivation rate at Celsius temperature TC, and k and k* have

the same units, which are day�1.

Water quality models use a slightly different formulation

of the temperature dependence in the form proposed by

Mancini (1978):

k
k�

¼ qTC�TC;� (5)

where TC is Celsius temperature, TC;� is the reference

temperature (often taken equal to 20 �C), k� is the first-order

inactivation constant at temperature TC;�, and q is the

temperature sensitivity parameter.

It is easy to see that parameters q and Q10 are related:

q ¼ Q1=10
10 (6)

The Arrhenius equation is used to describe the dependence

of first-order reaction rates on temperature in the form

k ¼ Aeð�Ea=RTÞ (7)

where A is the constant pre-factor, Ea is the activation energy,

R is the gas constant, T is the temperature in Kelvin, and k is

the inactivation rate at the temperature T �K. Both (4) and (5)

are approximations of (7) (see Appendix A).

Several authors have reported decimation time, or decimal

reduction time, t90, i.e., time needed to diminish the initial

http://dx.doi.org/10.1016/j.watres.2012.10.027
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population by tenfold, at different temperatures. As shown in

Appendix A, if (1) and (4) are applicable, the logarithm of the

decimation time should depend on temperature linearly and

the slope of this dependence is related to Q10.

Values of Q10 and k� were converted by logarithmic trans-

formation from (4) to the form

logk ¼ logk� þ 1
10

logQ10ðTC � TC;�Þ (8)

and by applying the nonlinear regression fitting algorithm in

the SigmaPlot 11 software (Systat Software, San Jose, CA) to

the experimental dependencies of k on temperature. The

value of TC;� was set to 20 �C, and the nonlinear fit was used to

estimate both average and standard errors of Q10 and k20.

Hypotheses about equality of average values of Q10 between

different data groups were tested, assuming normal distri-

bution of the estimated average and using the t-test with

squared standard errors as estimates of variance of the aver-

ages with the TINV function in MS Excel. Significance was

assessed at the 0.05 level for two-tailed distributions.

2.3. Determination of the inactivation rates

Each survival dataset was digitized from its original publica-

tion with the mapping software Surfer8 (Golden Software,

Golden, CO). The digitized data were transferred to SigmaPlot

11 (Systat Software, San Jose, CA) for plotting and analysis.

Inspection of the datasets showed generally four different

ways that the dependencies of logarithms of concentrations

on time were shaped. Fig. 1 shows the schematics we adopted

to characterize these inactivation patterns. Type 1 refers to

data that are approximately linear throughout the whole

range of observation times. Type 2 refers to data exhibiting

a fast decrease in population until the break time, tb, after

which the slope drastically decreases or becomes close to

zero. The data collected after tb is referred to as the “tail.” Type

3 refers to data exhibiting an approximately linear depen-

dence of Log C on time after some t0 substantially greater than

0. The term “shoulder” describes the part of the dataset

between experiment start time and t0. Finally, Type 4 refers

to data with a combination of “shoulder” and “tail”
Fig. 1 e Patterns found in data on E. coli inactivation in

waters.
characteristics. The first-order inactivation rate constants

were calculated from all data for datasets of Type 1, from data

between start time and tb for the datasets of Type 2, from data

after t0 for Type 3, and for data between t0 and tb for Type 4.

Values for time zero (t0) and break time (tb) had to be

determined to establish the range of points that made up the

approximately linear sections in datasets to be used in

computing inactivation rates. To find these values, we applied

the method of sequential linear fitting (Dathe et al., 2001). To

find the breakpoint tb for datasets of Type 2, the determination

coefficient R2 of the linear regression ‘t e log C’ was initially

computed for the first three experimental points, then for four

points, then for five points, etc., until all points were used in

computation. The set of points with the highest value of the

determination coefficient R2 was used to determine k. Simi-

larly, to find the t0 on datasets of Type 3, we computed

determination coefficients of the linear regression, ‘t e log C,’

and time beginning from the last three points, including more

and more points toward the start time. The point where the

determination coefficient reachedmaximum, t0, indicated the

starting point for the dataset section from which the k value

was found for Type 3 datasets. The method of sequential

linear fitting was not applicable to all points in observation for

the Type 4 datasets because of the presence of a shoulder and

a tail, so visual inspection was applied to select t0. All points

occurring before t0 were eliminated and sequential linear

fitting was applied to these shortened datasets to determine tb
for Type 4 datasets.

An example of applying this algorithm for a Type 2 dataset

is shown in Fig. 2. The maximum determination coefficient is

achieved when correlation is computed between log C and

time for points 1e5. The graph shows that the linear fit seems
Fig. 2 e An illustration of the sequential linear fitting used

to find the first-order die-off section of a type 2 dataset by

selecting the number of points included in the linear

regression computation that yields the greatest value for

the determination coefficient R2. In this case, the first 5

points provide the best fit since R2 [ 0.938, and points from

first through fifth constitute the approximately linear

section.

http://dx.doi.org/10.1016/j.watres.2012.10.027
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to be applicable for the first five points, but deterioration of the

fit is encountered as more than five points are included in the

regression; this deterioration is reflected by the decrease in R2.
3. Results

3.1. Occurrence of different inactivation patterns

The observed frequencies of the inactivation patterns were as

follows: Type 2 was found most often e in 46% of all cases;

Type 1 and Type 3 were encountered 25% and 27% of the time,

respectively; and Type 4 was found in 2% of all cases. The

prevalence of Type 2 is notable.

Initial concentrations and linearity ranges in the experi-

ments are shown in Fig. 3. The logarithms of initial concen-

trations expressed in CFU/ml, MPN/ml, or cells/ml were most

often between 5.5 and 8. Ranges in logarithms of concentra-

tions for the approximately linear section of inactivation in

datasets were most often between 2 and 6. A weak relation-

ship was observed between initial concentrations and

concentrations in the end of the linear section e the deter-

mination coefficient of the linear regression was only 0.22.

Subsetting data of Type 2 resulted in distributions of start

concentrations and linearity ranges (Fig. 3b, d) that were

similar to distributions observed for the whole database

(Fig. 3a, c).

The determination coefficients and root-mean-square-

errors obtained from all points in observations of Type 2, 3,

and 4 datasets were compared to linear fits of the approxi-

mately linear sections of those datasets (Fig. 4). Linear fit of all

points in observations of Type 2, 3, and 4 were, on average,

R2 ¼ 0.628 and RMSE ¼ 0.952. Linear fit of the approximately
Fig. 3 e Frequency distributions of initial concentrations and ran

concentrations for all experiments, (b) range of concentrations

with the type 2 inactivation pattern; (d) Concentration ranges alo
linear sections of those datasets provided much better accu-

racy: values of R2 and RMSEwere 0.901 and 0.439, respectively.

3.2. Temperature effect on inactivation rates for the
broad groups of datasets

Inactivation rate constants were very small in pristine waters;

moderate in agricultural waters and lakewaters;moderate-to-

large in estuary waters and groundwater; and large in river

water and wastewater (Fig. 5). Results of the regression anal-

ysis are presented in Table 1. The values of Q10 varied from

a minimum of 1.36 � 0.24 in wastewater to a maximum of

2.07� 0.19 inpristinewater. Fig. 5 andTable 1 show that theQ10

equation can simulate the trends in survival rate constants as

the temperature changes, although R2 values are low.

There were no significant differences ( p � 0.05, two-tailed

t-test) between estimates of Q10 for different groups. On the

contrary, however, significant differences were encountered

between k20 values of pristine water and all other water

sources. Additionally, there was a significant difference in k20
values between rivers and agricultural waters, wastewaters

and agricultural waters, rivers and lakes, and wastewater and

lakes.

3.3. Site-specific applications of the Q10 equation

Inactivation rates at three or more temperatures were studied

at some sites. Applicability of the Q10 equation at those sites is

illustrated in Fig. 6 and complementary Table 2. The Q10

equation fit site-specific data better than data from broad

groups. Results of the regression analysis for site-specific

cases are presented in Table 2. Changes in inactivation rates

with temperature at specific sites generally fit well with the
ges of inactivation in E. coli survival experiments: (a) initial

for all experiments; (c) Initial concentrations for datasets

ng the first linear section for the type 2 inactivation pattern.

http://dx.doi.org/10.1016/j.watres.2012.10.027
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Fig. 4 e Accuracy of linear approximation of all points in observation for type 2, 3, and 4 inactivation datasets as opposed to

linear approximation only of the approximately linear sections in these datasets: (a) determination coefficients of linear

regressions and (b) root-mean-squared errors.
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Q10 equation, however, the value of Q10 constants appeared to

be site-specific. The Q10 values varied widely in each category

of waters, and were mostly smaller than 2. Values of k20 were

substantially smaller in lakes than in rivers and coastal water.
4. Discussion

Type 2 inactivation patterns, representing fast inactivation

followed by slow inactivation, were the most prevalent in our

dataset. Mancini (1978) made a similar observation on coli-

form inactivation, reporting that mortality rates commonly

decreased as population decreased. Type 2 patterns may

originate from the fact that when protozoa coexist with

various sources of prey, active predation is exercised over the
Fig. 5 e Dependencies of E. coli inactivation rates on temperature

waters; G, groundwater; L, lakes and reservoirs; R, rivers and s
most abundant population and others remain as alternative

prey (Danso and Alexander, 1975). As the E. coli population is

depleted, it ceases to be the preferred prey and its inactivation

slows. If that is mostly true, there could be dependence

between the initial concentration and concentration at the

end of the fast inactivation stage. We have not observed such

dependence in our database (data not shown), but this could

be caused by the general heterogeneity of data. Another

explanation for change in the inactivation rate is that different

predator groups prey on coliforms during different periods

within the inactivation observation time (Brettar and Höfle,

1992; McCambridge and McMeekin, 1980). Factors other than

predation can also be responsible for the inactivation rate

change. In particular, Easton et al. (2005) proposed that the

pattern of leveling off toward some equilibrium level with
, grouped by water types; A, agricultural waters; P, pristine

treams; S, seawater and estuaries; W, wastewater.

http://dx.doi.org/10.1016/j.watres.2012.10.027
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Table 1 e Regression analysis of datasets for different
water sources.

Water source Q10 k20, day
�1 R2

Agricultural 1.548 � 0.161 0.388 � 0.024 0.640

Pristine 2.066 � 0.190 0.063 � 0.007 0.939

Groundwater 1.783 � 0.702 0.504 � 0.136 0.265

Lake 1.863 � 0.375 0.241 � 0.050 0.236

River 1.520 � 0.154 0.725 � 0.078 0.271

Sea, coastal 1.912 � 0.411 0.501 � 0.094 0.393

Wastewater 1.358 � 0.238 0.672 � 0.114 0.160

The “�” sign separates estimates of the average value of a param-

eter and its standard error.
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increasing time may have two possible reasons: (a) rapid rate

inactivation continues until the carrying capacity of the

environment is reached, and populations are thenmaintained

at that level because they are supported by the nutrients

present; or (b) these studies may show evidence of quorum-

sensing by microorganisms, i.e., the microorganisms are

preprogrammed to die-off by two or three log units and

maintain that level. Genetic differences can be also man-

ifested during the inactivation observation time, such that

subpopulations with different survival capabilities dominate

the total generic E. coli population during different periods of

the total period of observations (Velz, 1984). Finally, bacterial

prey may also persist due to the development of predation-

resistant organisms and evolution of avoidance strategies

(McCambridge and McMeekin, 1980).

The substantial presence of Type 3 inactivation patterns

also can be interpreted as the result of interactions between E.

coli and predator populations. Barcina et al. (1986a) observed

shoulders on E. coli survival graphs until the number of

predators reaches maximum, and afterward the E. coli pop-

ulation and heterotrophic community started to decrease. The

shoulder, or lag phase in this case, was interpreted as a result

of a dynamic balance between growth and death of the E. coli

population due to predator grazing. Another reason for the

appearance of the observed, apparent lag period could be the
Fig. 6 e E. coli inactivation rates at three or more temperatures at

USA (with sand) ( ); Lake Winnebago, WI, USA (no sand) ( ); L

Reservoir, Griffin, GA, USA ( ). (b) Rivers: Butron River, Spain (

USA (MPN estimate) ( ); Missouri River, USA (DVC) ( ); River S

effluent outfall) ( ). (c) Coastal waters: Onkaparinga Estuary, A

Australia ( ).
presence of non-viable E. coli cells in the inoculum used. This

could explain Barcina et al.’s (1986a) observation that the

count of E. coli remained constant while the heterotrophic

community and the protozoa population increased. We note

that patterns found in wastewater datasets mostly were of

Type 3 in our database. The growth of enteric bacteria with

adequate nutrients present at increasing temperatures has

been noted (Lessard and Sieburth, 1983) and related to

improved E. coli survival (Ravva and Korn, 2007).

Grouping of waters in this work followed earlier observa-

tions that E. coli inactivation patterns within the same cate-

gory of waters were similar; for example, the closeness of the

E. coli inactivation rates for estuaries was noted by Faust et al.

(1975). We found, however, that E. coli survival rates within

a category of waters were highly variable at the same

temperature (Fig. 3); variations in biological and physical

survival factors could be the reason. The microbial ecosystem

composition can affect E. coli survival. Also, the nutritional

value of added E. coli for eukaryotic predators is higher than

wild or indigenous prey (Barcina et al., 1986a) and predators

such as ciliates, for example, can select prey in terms of its

nutritional value (Dive, 1973). Noble et al. (2004) compared E.

coli inactivation rates in mesooligotrophic and eutrophic

waters and noted that enzymatic degradation, secondary

production, and grazing occurred at lower rates in meso-

oligotrophic waters, which may have caused lower rates

of inactivation or removal of allochthonous bacteria. The

indirect effect of water biota on E. coli survival was demon-

strated by Gray (1975) who suggested that the numbers of E.

coli in natural waters may sometimes be determined by the

content of dissolved carbon dioxide, which itself is affected

by the volume of photosynthesizing green cells. Sampson

et al. (2006) reported that the presence of sand in a lake

water microcosm increased the time of E. coli survival. They

suggested that the presence of solid particulate material or

green algae could affect E. coli survival in microcosms by

providing protection or a site of higher nutrient concentra-

tions. Although temperature-dependence on E. coli survival

rates from the same water sources varied, substantial
specific sites; (a) lakes and reservoirs: LakeWinnebago,WI,

ake Jackson, GA, USA ( ); Lake Herrick, GA, USA ( );

); Missouri River, MO, USA (CFU) ( ); Missouri River, MO,

owe, UK (above effluent outfall) ( ); River Sowe, UK (below

ustralia ( ); Henley Beach, Australia ( ); Port Adelaide,

http://dx.doi.org/10.1016/j.watres.2012.10.027
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Table 2 e Regression analysis results for datasets for site-specific studies.

Water source Q10 k20, day
�1 R2 Reference

Lakes

Lake Winnebago, WI, USA (with sand) 2.261 � 1.030 0.128 � 0.060 0.616 Sampson et al., 2006

Lake Winnebago, WI, USA (no sand) 2.043 � 1.124 0.212 � 0.119 0.457 Sampson et al., 2006

Lake Jackson, GA, USA 2.247 � 1.430 0.103 � 0.053 0.618 Wang and Doyle, 1998

Lake Herrick, GA, USA 1.415 � 0.100 0.056 � 0.003 0.960 Wang and Doyle, 1998

Reservoir Griffin, GA, USA 1.101 � 0.239 0.045 � 0.008 0.163 Wang and Doyle, 1998

Rivers

Butron River, Spain 1.612 � 0.172 0.834 � 0.066 0.953 Barcina et al., 1986b

Missouri River, MO, USAa 1.241 � 0.047 1.131 � 0.057 0.971 Bogosian et al., 1996

Missouri River, MO, USAb 1.217 � 0.099 1.049 � 0.115 0.854 Bogosian et al., 1996

Missouri River, MO, USAc 1.213 � 0.070 1.051 � 0.081 0.919 Bogosian et al., 1996

River Sowe, UK (above effluent outfall) 1.646 � 0.288 0.734 � 0.159 0.802 Flint, 1987

River Sowe, UK (below effluent outfall) 1.600 � 0.342 0.434 � 0.113 0.707 Flint, 1987

Coastal waters

Onkaparing Estuary, Australia 1.691 � 0.278 0.746 � 0.100 0.911 Craig et al., 2004

Henley Beach, Australia 1.188 � 0.007 2.124 � 0.009 0.999 Craig et al., 2004

Port Adelaide, Australia 2.253 � 0.150 0.795 � 0.040 0.993 Craig et al., 2004

The “�” sign separates estimates of the average value of a parameter and its standard error.

a CFU/ml on eosin methylene blue agar.

b Cells/ml with MPN estimate using lysogeny broth (LB) medium.

c Cells/ml with direct viable count.
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differences between groups could still be observed (Table 1) e

inactivation in rivers and wastewater was faster than in lakes

and clean water sources.

Bacteria enumeration techniques differed among the

experiments cited in this work. The MPN estimates were

determined with both Colilert and Colisure media, while CFU

countswere performedusing one of the following: EMBagar, LB

agar, mFC agar, lauryl sulphate agar, oxoid nutrient agar,

lactose agar, blood heart infusion agar, MacConkey agar, Endo

agar, and Chromcult agar. Available nutrients differ for each

medium which might affect the detection capacity of E. coli,

especially innon-pure cultureswhereE. colimust competewith

other microbes for nutrients. E. coli survival rates in Missouri

river water (Table 2) obtained with three different media were

not statistically different ( p< 0.05), however, this result cannot

be generalized. The selection of the enumeration medium

significantly affected the estimated survival rates of Listeria

innocua due to the sensitivity of stressed bacteria to selective

compounds (Miller et al., 2009). If this is also applicable to E. coli,

differences in enumeration methods could influence the

observed variability we have seen in E. coli survival rates in

experiments from the same categories of waters.

Site-specific Q10 equations were more accurate than Q10

equations for broadwater categories in termsof theR2 values in

regressions (compare Tables 1 and 2). The site-specific Q10

constants had R2> 0.7 for rivers and coastal waters, whereas R2

valuesweremuch smallerwith lakes and reservoirs data (Table

2). The Q10 or the Arrhenius equation with a single set of

parameters may not necessarily be applicable over the wide

rangeof temperatures from4or 5 �C to 35or 37 �C that is usually

considered. E. coli inactivation is a result of the complex inter-

action of factors, with the influence of each generally having its

own temperature-dependence. Grazing by zooplankton and

microplankton, toxic algal products and other toxins, along
with various chemical and physical factors are commonly

mentioned as reasons for decreased E. coli numbers in

untreated surface waters (Klein and Alexander, 1986; Amy and

Hiatt, 1989; Barcina et al., 1997). Barcina et al. (1986a) noted that

besides an intrinsic influence of the temperature on the death

rate of E. coli, there is an indirect effect of temperature on E. coli

die-off through natural microflora of the water. McCambridge

and McMeekin (1980) showed that bacterial decline depended

on the presence of both bacterial and protozoan predators, the

latter having a temperature optimum of 15e20 �C and the

former becoming more important as the incubation tempera-

ture increased. Enzinger and Cooper (1976) suggested that

eukaryotic organisms (protozoan predators) are more effective

in removing E. coli than prokaryotic organisms. Besides,

different groups of predators often prey on coliforms during

different periods within the inactivation observation time

(Brettar and Höfle, 1992) and the dependencies of those groups

on temperature may not coincide. Also, E. coli metabolism can

undergo qualitative changes as temperature decreases. In cold,

low temperature environments, E. colimetabolism is drastically

slowedand their affinity for substratebecomes lower.Whenthe

temperature becomes low enough (around 5 �C) E. coli can be

driven into a viable but not culturable (VBNC) state, which

allows continuous survivalwithout the ability to divide (Garcia-

ArmizenandServais, 2004;Naet al., 2006). In thenon-culturable

state, the cells may not be available for enumeration with

growthmedia, but they canbe resuscitated to regain that ability

when the environmental stress is alleviated (Wang and Doyle,

1998). It is possible that the Q10 equation is only applicable to

simulate E. coli survival in anoptimumwindowof temperatures

starting above and ending below stressful conditions.

Values of Q10 temperature coefficients reported for most

biological reactions commonly range between 2 and 3,

meaning that the reaction rate doubles or triples for every

http://dx.doi.org/10.1016/j.watres.2012.10.027
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10 �C increase (Reyes et al., 2008). Our results show values of

Q10 mostly less than 2 (Tables 1 and 2) and as small as 1.1,

indicating very low sensitivity to temperature. Applying Eq.

(A5) to the data of Allwood et al. (2003), Barcina et al. (1986a),

and Craig et al. (2004) on E. coli inactivation in dechlorinated

tap water, river water, and recreational coastal water,

respectively, resulted in values of Q10 ¼ 1.31, 1.98, and 2.01,

which are substantially smaller than the values shown in

Table 2. The sensitivity of the survival rates to temperature

becomes relatively low at values of Q10 close to 1. Such low

sensitivity has been observed in experiments with an absence

of microflora (Korhonen and Martikainen, 1991). The

temperature sensitivity of E. coli die-off in natural conditions,

and therefore values of Q10, might also be affected by light-

edark diurnal variations. This effect could be elucidated in

lightedark variation-based E. coli survival studies that are

currently very rare but would be of special interest.

The sensitivity of E. coli survival to temperature has been

shown to have implications for management decisions.

Sampson et al. (2006) noted that the observed dependence of

E. coli survival to temperature challenges the beliefs held by

many recreational water managers that E. coli will not survive

as long at colder temperatures as in warmer conditions.

Vasconcelos and Swartz (1976) stated that since the survival

potential of E. coli and other coliforms can be extended by low

water temperatures, the discontinuance of wastewater

disinfection during the winter months seems inadvisable for

many cold coastal regions. Harmel et al. (2010) observedmuch

lower E. coli concentrations in a river than in small streams

and agricultural waters across itswatershed, suggesting faster

E. coli die-off in the river than other categories of waters

(analogous to what can be seen in Fig. 3 and Table 1). The

possibility of scale-dependence in microorganism survival in

waters needs to be researched with reference to watershed-

scale bacterial transport modeling.

The frequent occurrence of Type 2 and 3 inactivation

patterns observed in our database supports the conclusions of

previous reviews (Benham et al., 2006; Pachepsky et al., 2006),

namely, that applicability of the one-parametric Chick law (1)

to actual data on microorganism survival is limited, and more

flexible models may be needed. The linear approximation of

“log C � t” dependencies appears to be inaccurate in many

cases (Fig. 4); therefore, dataset truncation that corresponds to

the approximately linear sections of Type 2, 3, and 4 patterns

more accurately represents the E. coli inactivation rate. A

variety of models, including expressions developed by Veltz,

Weibull, Gompertz, Frost and Streeter, among others, have

been suggested as bettermathematical expressions to fit E. coli

inactivation data in which gradual decrease in die-off rate is

observed (Easton et al., 2005; Corradini and Peleg, 2004). We

note however, that we have observed mostly well-expressed

piecewise-linear Type 2 patterns, while smooth, noticeably

downward, concave curves with well defined non-linearity

were relatively rare. Current predictive models used to

support management decisions, such as SWAT and HSPF,

consider only Type 1 inactivation patterns (Benham et al.,

2006). Therefore, these models may substantially underesti-

mate or overestimate the in-stream microorganism inactiva-

tion when the Type 1 is not applicable e or in almost three-

quarters of cases based on frequencies found in this work.
5. Conclusions

Inspection of multiple datasets on E. coli inactivation in

natural waters in laboratory experiments showed there are

three general patterns of E. coli inactivation in waters. In two

of them, which occurred almost three-quarters of the time, E.

coli inactivation does not follow the first-order decay equation,

and dependence of logarithm of concentration on time is not

approximately linear, but rather piecewise-linear with,

usually, two linearity sections. The uncertainty in inactivation

shapes presents a source of uncertainty that must be

acknowledged and dealt with explicitly in pathogen and

indicator fate and transport models.

Applied to data from the first linearity section of inactiva-

tion, the Q10 equation can be used to model the dependence of

E. coli inactivation rates on temperature in various sources of

water. Differences in E. coli inactivation rates among broad

groups of waters can be seen, however, the Q10 equation is

more accurate when water from the same source is tested at

different temperatures.

This work can be extended to test the applicability of theQ10

equation on E. coli inactivation in waters exposed to time-

variable temperature and illumination conditions, as well as

for E. coli inactivation in soils and organic waste. Preliminary

research shows that data on Salmonella and enterococci can be

collected and processed in a manner similar to this work. Col-

lecting a broader database will be helpful because better guid-

ance can be given in calibrating fate and transport modeling

systems used to make environmental management decisions.

Acknowledgement

The United States Environmental Protection Agency (gs1)

through its Office of Research and Development partially

funded and collaborated in the research described here

under contract DW-12-92348101 to the USDA-ARS. It has

been subjected to agency review and approved for publication.

Appendix A
Relationships between models of microbial survival rate
dependence on temperature

From the Arrhenius equation (7), the ratio of rate constants at

temperatures T and T� is

k
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¼ exp
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� Ea

R
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where TC is the Celsius temperature. If terms TC=273:15 and

TC;�=273:15 are small compared to 1, which is commonly the

case, then the last equation reduces to

k
k�

¼
(
exp

�
Ea

R� 273:152

�)TC�TC;�

(A2)

Comparison of Eqs. (A1) and (4) shows that they are iden-

tical provided

Q10 ¼ exp

�
10Ea

R��273:152

�
(A3)

The value of the gas constant is R¼ 8.31 J/(mol K), and values

of the inactivation energy for Q10 equal to 1.5, 2, and 2.5 are

2.5 � 104 J/mol, 4.3 � 104 J/mol, and 5.7 � 104 J/mol,

respectively.

Eq. (3) with k defined from (4) is

log C ¼ log C0 � k�Q
ðTC�TC;�Þ=10
10 t (A4)

Decimation results in log C0 � log C ¼ 1 and therefore

t90 ¼ k�Q
�ðTC�TC;�Þ=10
10 (A5)

Therefore, linear regression

log t90 ¼ A� BTC (A6)

has the slope B related to Q10 as

Q10 ¼ 1010B (A7)

Appendix B. Supplementary data

Supplementary data related to this article can be found at

http://dx.doi.org/10.1016/j.watres.2012.10.027.
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