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GENERATION OF ENSEMBLE STREAMFLOW FORECASTS USING AN
ENHANCED VERSION OF THE SNOWMELT RUNOFF MODEL!

Brian J. Harshburger, Von P. Walden, Karen S. Humes, Brandon C. Moore, Troy R. Blandford,
and Albert Rango®

ABSTRACT: As water demand increases in the western United States, so does the need for accurate streamflow
forecasts. We describe a method for generating ensemble streamflow forecasts (1-15 days) using an enhanced
version of the snowmelt runoff model (SRM). Forecasts are produced for three snowmelt-dominated basins in
Idaho. Model inputs are derived from meteorological forecasts, snow cover imagery, and surface observations
from Snowpack Telemetry stations. The model performed well at lead times up to 7 days, but has significant
predictability out to 15 days. The timing of peak flow and the streamflow volume are captured well by the
model, but the peak-flow value is typically low. The model performance was assessed by computing the coeffi-
cient of determination (R?), percentage of volume difference (Dv%), and a skill score that quantifies the useful-
ness of the forecasts relative to climatology. The average R? value for the mean ensemble is >0.8 for all three
basins for lead times up to seven days. The Dv% is fairly unbiased (within +10%) out to seven days in two of the
basins, but the model underpredicts Dv% in the third. The average skill scores for all basins are >0.6 for lead
times up to seven days, indicating that the ensemble model outperforms climatology. These results validate the
usefulness of the ensemble forecasting approach for basins of this type, suggesting that the ensemble version of
SRM might be applied successfully to other basins in the Intermountain West.
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INTRODUCTION ment. In many regions, agricultural, municipal, and

environmental water uses increase demands on lim-

ited freshwater resources. In the western United

Realistic and accurate streamflow forecasts are States (U.S.), the planning and management of water
essential for water resources planning and manage- resources is particularly challenging because water
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supplies are often derived from runoff due to snow-
melt. As a result, knowledge of the timing, rate, and
volume of snowmelt is crucial for the management of
water resource systems, which are designed for pur-
poses such as irrigation, wildlife management, recrea-
tion, flood control, and hydroelectric power
generation.

Probabilistic streamflow forecasting provides users
(e.g., reservoir operators) with information regarding
the uncertainty or range of forecasts over a given
time period. The goal is to provide the best, most
accurate forecast possible, while minimizing the
uncertainty commonly associated with input data and
streamflow forecast models (Singh and Singh, 2001).
In recent decades, considerable efforts have been
devoted to improving probabilistic streamflow fore-
casts for lead times of days, weeks, and months. This
has led to the development of ensemble streamflow
prediction systems, which generate a set of forecasts
that are intended to represent the range of possible
streamflow values. In an early attempt, Day (1985)
used weather inputs from historical climate records
to generate ensemble streamflow predictions. More
recently, ensemble inputs obtained from numerical
weather prediction models, which have been found to
be useful in the short-to-medium range (1 to 15 days)
(Buizza et al., 1999; Mullen and Buizza, 2001; Clark
et al., 2004; Hamill et al., 2004), have been used to
generate such forecasts (e.g., Wigmosta et al., 1994;
Westrick et al., 2002; Clark and Hay, 2004). Weather
forecast ensembles are input into a hydrologic model
and a number of possible predictions are generated,
each with an assigned probability of occurrence. This
approach is advantageous when compared with tradi-
tional forecasting methods (single forecast only),
which provide no indication of how likely a forecast is
to be correct.

The scope of this study is to evaluate an ensemble
prediction system for short-to-medium range stream-
flow forecasts (1 to 15 days in advance) for three
basins in the state of Idaho in the U.S. Idaho is
located in a region called the Intermountain West,
which is roughly defined here as being the region
between the Cascade and Sierra Nevada ranges and
the Rocky Mountains and, thus, includes portions of
Idaho, Utah, Nevada, Arizona, and Colorado. The
hydrologic model used in this study is the snowmelt
runoff model (SRM), which was designed to simulate
and forecast streamflow in mountainous areas where
snowmelt is the major contributing factor to runoff
(Martinec et al., 1994; Mitchell and DeWalle, 1998).
SRM was used in this study because it has been suc-
cessfully tested in numerous mountainous water-
sheds around the world (e.g., Martinec, 1975; Shafer
et al., 1982; Dey et al., 1989; Rango and Katwijk,
1990; Mitchell and DeWalle, 1998; Nagler et al.,
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2000; Gomez-Landesa and Rango, 2002; Hong and
Guodong, 2003) and is a widely accessible model with
minimal data requirements. Two enhancements were
made to the model by Harshburger et al. (2010): (1)
the use of an antecedent temperature index method
to track snowpack cold content and determine when
the snowpack is ripe (snowpack cannot retain any
more liquid water), and (2) the use of both maximum
and minimum critical temperatures to partition pre-
cipitation into rain, snow, or a mixture of rain and
snow. Harshburger et al. (2010) tested the enhance-
ments in three mountainous basins located in Idaho
and found that they improved upon the original
version of the model.

SRM has been used previously to produce single-
deterministic streamflow forecasts (e.g., Rango and
Martinec, 1994; Nagler et al., 2000; Harshburger
et al., 2010). Nagler et al. (2008) used SRM to gener-
ate ensemble streamflow forecasts for the Otztal
drainage basin located in the Austrian Alps. Fore-
casts were generated for two snowmelt seasons at
lead times of one to six days. The forecast results
revealed that there was a good agreement between
the ensemble streamflow predictions and the
observed streamflow. However, quantitative statistics
were not used to assess the usefulness of the ensem-
ble predictions.

The objective of the work presented here is to
produce and evaluate short-to-medium range ensem-
ble streamflow forecasts (1 to 15 days) using an
enhanced version of SRM. Streamflow forecasts are
evaluated for three mountainous basins located in
Idaho for four snowmelt seasons (2003-2006), the
same basins used by Harshburger et al. (2010). The
three basins modeled in this research are typical of
many mid-elevation basins throughout the Inter-
mountain West, in terms of physiographic character-
istics (area, elevation range), as well as the
availability and density of surface data used in the
analysis. Therefore, this modeling framework may
be applicable to other basins within the Intermoun-
tain West.

ENSEMBLE PREDICTION SYSTEM

Figure 1 shows a flow diagram for the ensemble
forecasting system using the enhanced version of
SRM. Below is a brief description of SRM, followed
by descriptions of the input data used in the ensem-
ble forecasting system, including the downscaled
temperature and precipitation forecasts, as well as
the satellite imagery used to obtain estimates of
snow-covered area (SCA). SRM can be obtained at
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FIGURE 1. Flow Diagram for the Ensemble Forecasting System Using the Enhanced Version of the Snowmelt Runoff Model (SRM). The
acronyms in this figure are (starting from the box in the upper left and proceeding clockwise): T,.x, maximum daily temperature; T',;,,, mini-
mum daily temperature; NCEP, National Center for Environmental Prediction; SCA, snow-covered area; MODIS, Moderate Resolution Imag-
ing Spectroradiometer; SWE, snow water equivalent; SNOTEL, Snowpack Telemetry; NRCS, National Resources Conservation Service;

USGS, United States Geological Survey.

http://hydrolab.arsusda.gov/cgi-bin/srmhome, or by
contacting Al Rango (alrango@nmsu.edu) or Ralph
Roberts (ralph.roberts@ars.usda.gov) directly. The
enhanced version of SRM can be obtained by contact-
ing Brian Harshburger (brian.harshburger@aniuk
consulting.com).

Model Description

The SRM is a conceptually based, degree-day (tem-
perature index) model (Martinec et al., 1994). Model
input variables include daily average air tempera-
ture, daily total precipitation, and SCA. As SRM is a
semidistributed model, these variables are distributed
among elevation zones (each with approximately
500 m of relative relief). The following equation is
used in SRM to simulate the daily streamflow dis-
charge @ (m®/s):

Qn+1 = ann+1 + (1 - kn+1)f
Z (csiin X @i n(Tin + AT n)Sin + CRin X Pin)Ai,

i

(1)
where n is the day number, i is the index for each
elevation zone, and f is a conversion factor
(cm km?/day to m®/s). The recession coefficient, %, is
the proportion of daily melt water production that
immediately appears as runoff (Martinec et al., 1994),
and corresponds to the ratio of runoff on consecutive
days without snowmelt and rainfall. Snowmelt and
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rainfall contributions are calculated separately for
each elevation zone (area of A), and require the fol-
lowing input variables and parameters: T (°C/day),
the number of degree-days, the temperature-lapse-
rate adjustment AT (°C), the precipitation P contrib-
uting to runoff (cm), the fraction of SCA S, the
degree-day factor a (cm/°C/day), and the runoff coef-
ficients for snow and rain (cg and cgr), which repre-
sent the difference between the available water
volume and the outflow from the basin. A description
of the model enhancements, along with results from
model simulations used to test the enhancements can
be found in Harshburger et al. (2010). The parame-
ters used in the model are also described, along with
the methods that are used to compute them.

Model Inputs
Temperature and Precipitation. Ensemble
forecasts of temperature and precipitation are

obtained from the Global Forecasting System (GFS)
model (2.5 degree grid cells) produced by the National
Center for Environmental Prediction. Due to the
coarse spatial resolution of the GF'S forecast data, the
forecasted values are downscaled to the locations of
Snowpack Telemetry (SNOTEL) stations, located
within or surrounding each basin. Seven SNOTEL
stations were used for the Big Wood Basin and five
stations each for the South Fork of the Boise and
North Fork of the Clearwater Basins. SNOTEL data
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were provided by the Natural Resources Conservation
Service (NRCS).

The downscaling method used here closely follows
the work of Clark and Hay (2004) and Clark et al.
(2004). Here, we briefly describe the aspects of the
method that are important for this study. The down-
scaling process uses historical forecast data from the
GFS to assess the statistical relationship between
weather forecast variables and observed temperature
and precipitation values from the SNOTEL stations
(Clark et al., 2004; Moore, 2005). GFS forecasts are
generated every 12 h and extend out 1 to 15 days in
advance (Hamill et al., 2004). Each forecast initializa-
tion uses 15 different initial conditions from which 15
meteorological forecast ensemble members are
derived; however, only the control forecast (the aver-
age of the 15 ensemble members) is used to deter-
mine the regression coefficients used in the
downscaling process. Seven forecast variables are
used, including, 2-m air temperature, precipitation,
700-millibar relative humidity, sea-level pressure, 10-m
meridional and zonal wind components, and total col-
umn precipitable water. These variables have been
previously found to be important predictor variables
for downscaling temperature and precipitation in the
contiguous U.S. (Clark and Hay, 2004) and verified
for Idaho by Moore (2005).

Using the technique outlined by Clark and Hay
(2004), multiple-linear regression with forward selec-
tion is used to downscale the temperature and precip-
itation forecasts to the location of SNOTEL sites
located within or surrounding each basin. Unique
regression equations are generated for each SNOTEL
site, variable (temperature and precipitation), month
(March-July), and forecast lead time (30 lead times
extending out 15 days). These equations are based on
the seven GFS variables from the three nearest con-
secutive 12-h time steps. This results in 21 predictors
(7 variables at 3 time steps) each for both tempera-
ture and precipitation. In addition to the multiple lin-
ear regression method described above, logistic
regression with forward selection is used to estimate
the probability of precipitation occurrence (Clark and
Hay, 2004). The coefficients are determined by train-
ing the regression equations (multiple linear regres-
sion and logistic regression) on a subset of the data
(i.e., 1995-2001); the remainder of the data is then
used for validation.

Once the regression coefficients have been deter-
mined, they can be applied to real-time GFS ensem-
ble forecasts to obtain ensemble forecasts of
temperature and precipitation. The coefficients are
applied to each of the 15 forecast ensembles and all
30 forecast lead times. This results in 15 ensemble
forecasts of temperature and precipitation amount
that extend out 15 days (30 lead times, each with a
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length of 12 h). Once the precipitation forecasts have
been computed, the logistic regression coefficients
obtained during the downscaling process are applied
to estimate the probability of precipitation occur-
rence. Using the method described by Clark et al.
(2004), random numbers are then generated from a
uniform distribution (between 0 and 1) for each
ensemble and forecast lead time. If the probability of
precipitation occurrence is less than the random
number, we assume that there is no precipitation.
However, if the probability of precipitation occurrence
is greater than the random number, we assume that
the precipitation will occur and the amount deter-
mined from the multiple regression is used in the
forecast.

Because SRM runs on a daily time step, the 15
temperature and precipitation ensemble forecasts (30
lead times, extending out 15 days) are converted to
daily forecast values. This is accomplished by tempo-
rally matching the forecasts with the SNOTEL obser-
vations. GFS forecasts are generated at both
1200 UTC (05:00 h Mountain Standard Time; MST)
and 0000 UTC (17:00 h MST) and are valid for the
previous 12-h period. The analysis of hourly SNOTEL
data records indicates that the minimum daily tem-
perature (T',;,) typically occurs between 17:00 h and
05:00 h, and the maximum temperature (Tp,.) typi-
cally occurs between 05:00 h and 17:00 h. Therefore,
the downscaled T,,;, ensemble forecasts are calcu-

lated using forecast lead times 1, 3, 5, ... , 29, and
the downscaled T.,,x ensemble forecasts are derived
from forecast lead times 2, 4, 6, ..., 30. As a result,

daily T,,;, and Tp,.x ensemble forecasts are computed
out to 15 days. The forecasted ensemble values T«
and T,;, are then converted to forecast values of
daily average temperature (15 ensembles) by simply
averaging them. The ensemble precipitation forecasts
are converted to daily values by taking the sum of
the precipitation forecasts obtained for each of the
two time steps for a given day. For example, the pre-
cipitation forecast for Time step 1 is added to the
forecast for Time step 2.

Coherence between the temperature and precipita-
tion forecasts is achieved through the use of the
“Schaake shuffle” as described by Clark et al. (2004).
The Schaake shuffle essentially integrates the coher-
ence in the historical record into the forecast ensem-
bles. Time-series historical daily-average temperature
values (extending out 15 days) from the SNOTEL
sites used in the downscaling process are collected so
as to lie within seven days before and seven days
after the forecast date; dates can be selected from all
years in the historical record except from the year
that is being forecasted. This process is completed
separately for each of the 15 forecast ensembles;
however, the same historical dates are used for each
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station. The historical daily-average temperature val-
ues are then sorted from lowest to highest. In addi-
tion, the daily-average temperature forecast ensemble
members are also sorted from the lowest to highest.
The sorted historical data are replaced with the
sorted ensemble forecasts, and then resorted by (his-
torical) year. For example, if the first year in the his-
torical time series (say 1979) had the 20th highest
temperature, then the first temperature ensemble
member would be the ensemble with the 20th highest
temperature. The corresponding precipitation forecast
ensemble would then be used for Ensemble #1. This
preserves the observed correlation between tempera-
ture and precipitation for the ensemble members
(Clark et al., 2004). The downscaling process results
in 15 forecast ensembles of daily-average temperature
and precipitation for each SNOTEL station and each
of the 15 forecast lead times (days). A 16th ensemble
member (for temperature and precipitation) is then
created by taking the average of the 15 ensemble
members described above. This ensemble member is
now referred to as the “mean” ensemble.

Finally, the daily-average temperature ensemble
forecasts for each station and lead time are averaged
to create a synthetic station and are extrapolated to
the hypsometric mean elevation of each elevation
zone using monthly mean lapse rates from Blandford
et al. (2008). This process is completed separately for
each ensemble member. For example, Temperature
Ensemble #1 from Station #1 is averaged with Tem-
perature Ensemble #1 from the remaining stations.
The elevation of the synthetic station is the mean ele-
vation of all of the SNOTEL stations used to model
each basin (Richard and Gratton, 2001). The precipi-
tation ensemble forecasts are also averaged to create
a synthetic station; however, the average values are
applied across the entire basin. No adjustment is
made to account for changes in precipitation with ele-
vation because the measurements from the SNOTEL
sites in each of the study basins indicated a weak
dependence of precipitation on elevation.

Snow-Covered Area. SCA data are obtained
from the MODIS eight-day composite snow cover data
product (MOD10A2). This data product was obtained
from the National Snow and Ice Data Center. Eight-
day composite data are used to maximize the amount
of useable SCA images and to minimize the effect of
cloud cover. Harshburger et al. (2010) gives a full
description of how the eight-day composite SCA data
are used to create snow depletion curves, and how
the curves are then used to produce the streamflow
forecasts.

Model Updating. The enhanced version of SRM
is updated on a daily basis with observed tempera-
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ture, precipitation, and streamflow values from the
previous day. These observational data are provided
by the NRCS and the U.S. Geological Survey (USGS)
(http://water.usgs.gov/data). Model updating is com-
pleted to avoid the propagation of errors in the
streamflow forecasts. Harshburger et al. (2010) con-
tains a full description of the model-updating process,
along with a description of how the data are used in
the model.

APPLICATION OF THE SNOWMELT RUNOFF
MODEL ENSEMBLE APPROACH TO THREE
STUDY BASINS

Ensemble streamflow forecasts were generated for
the Big Wood, South Fork of the Boise, and North
Fork of the Clearwater Basins in the state of Idaho
(Figure 2) for the 2003, 2004, 2005, and 2006 snow-
melt seasons. The streamflow was modeled at a single
stream gauge located in each of the three basins.
These gauges were selected based upon their hydro-
logical significance, data availability, and the fact
that they are located upstream of all significant dams

NF Clearwater

SF Boise

FIGURE 2. Map of Idaho Showing the Location of the Basins
Modeled in This Study. The triangles represent the locations of the
stream gauges.
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and diversions and, therefore, represent natural flow
(Harshburger et al., 2010). Characteristics of each of
the three test basins, along with the number of eleva-
tion zones that are used to model each basin, are
found in Table 1.

RESULTS AND DISCUSSION

To assess the performance of the ensemble stream-
flow predictions relative to actual streamflow mea-
surements, coefficients of determination (R?),
percentages of volume difference (Dv%), and skill
score statistics were computed for all forecast cases.
The results based on the mean ensemble, averaged
over all four of the study years, are summarized in
Table 2 and are discussed below. In addition, forecast
hydrographs were generated to visually compare the
actual (measured) stream discharge with the fore-
casted values at lead times of 1, 3, 7, and 10 days, to
make qualitative observations related to the timing of
peak flows and other forecast characteristics. As four
years (2003-2006) of ensemble streamflow forecasts
were generated for each of the three basins at every
forecast lead time, numerous plots were generated;
only two sets of forecast plots are shown here, one for
an average flow year and the other for a low flow
year (Figures 3 and 4). In addition, the streamflow

forecast ensembles were converted to exceedance
probabilities to limit the number of lines shown on
the plots. The 10, 25, 50 (median), 75, and 90% excee-
dance probability lines are shown on the ensemble
forecast plots. Forecast results are shown for lead
times of 10 days or less because the usefulness of the
forecasts decreases at lead times longer than that.
Figure 3 shows the forecast results for the Big
Wood River Basin during the 2003 snowmelt season
(April 1-July 31). This year was noteworthy because
it was an average flow year (Harshburger et al.,
2010) and illustrates how the ensemble forecasts per-
form under normal conditions. As can be seen, the
ensemble forecasts follow the measured flow fairly
well, although there are small differences in the tim-
ing. The quality of the streamflow forecasts also
degrades with increasing lead time. This can be
attributed to uncertainties in the model estimates
and the fact that the accuracy of the temperature
and precipitation forecasts generally decrease as lead
time increases. Even though there are small timing
issues in the streamflow forecasts, the model cor-
rectly forecasted the timing of the peak flow seven
days in advance. The streamflow forecast ensembles
capture the measured streamflow very well; however,
there are times when the measured streamflow lies
above the 10% exceedance probability line and below
the 90% exceedance probability line. In addition, the
magnitude of the peak discharge is between the 10%
and 25% exceedance probability lines for all of the

TABLE 1. Characteristics for the Three Test Basins Modeled in This Study.

Contributing Elevation No. Elevation Mean Average
Basin Area (km?) Range (m) Zones Annual Discharge (cm)
Big Wood 1,625 1,618-3,630 5 12.96
South Fork of the Boise 1,639 1,316-3,159 4 19.71
North Fork of the Clearwater 3,520 504-2,407 4 92.44

TABLE 2. The Average Coefficient of Determination (R?), Percentage of Volume Difference (Dv%), and Skill Score Values
Calculated for the Mean Ensemble at Various Forecast Lead Times (in days).

Lead R? Dv% Skill Score

-

( (;;“y‘;) Bwood SF Boise NF Clwater Bwood SF Boise NF Clwater Bwood  SF Boise  NF Clwater
1 0.96 0.96 0.94 ~0.7 05 3.1 0.82 0.83 0.80
2 0.93 0.93 0.91 05 2.7 6.3 0.80 0.80 0.76
3 0.91 0.91 0.89 0.1 3.1 8.2 0.78 0.79 0.73
4 0.89 0.88 0.87 0.0 3.6 10.2 0.77 0.77 0.69
5 0.86 0.86 0.83 0.1 4.2 11.7 0.74 0.75 0.65
7 0.79 0.80 0.78 1.2 6.4 14.6 0.69 0.70 0.57

10 0.75 0.74 0.72 3.6 10.6 19.2 0.63 0.62 0.45

15 0.59 0.58 0.63 8.7 15.0 24.2 0.50 0.47 0.28

Notes: The averaging is performed over the four study years for each basin. More detailed explanations of the three variables are described
in the text. “Bwood” refers to the Big Wood Basin, “SF Boise” to the South Fork of the Boise River Basin, and “NF Clwater” to the North

Fork of the Clearwater River Basin.
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FIGURE 3. Hydrographs of the Daily Streamflow Amount Generated by the Ensemble Model for the Big Wood River Basin in 2003 at Lead
Times of (a) 1 Day, (b) 3 Days, (¢) 7 Days, and (d) 10 Days. The plots show the measured daily streamflow (black), the 10% exceedance proba-
bility (magenta), the 25% exceedance probability (cyan), the 50% exceedance probability (green), the 75% exceedance probability (blue), and
the 90% exceedance probability (red). The instantaneous measured streamflow values were averaged to daily streamflow values to be compat-

ible with the ensemble model simulations.
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FIGURE 4. Hydrographs of the Daily Streamflow Amount Generated by the Ensemble Model for the South Fork of the Boise River Basin in
2004 at Lead Times of (a) 1 Day, (b) 3 Days, (c) 7 Days, and (d) 10 Days. The plots show the measured daily streamflow (black), the 10% ex-
ceedance probability (magenta), the 25% exceedance probability (cyan), the 50% exceedance probability (green), the 75% exceedance probabil-
ity (blue), and the 90% exceedance probability (red). The instantaneous measured streamflow values were averaged to daily streamflow
values to be compatible with the ensemble model simulations.
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four forecast lead times illustrated here (Figure 3).
This can be attributed to the fact that the peak flow
typically occurs as a result of significant increases in
temperature or large rainfall events, and the meteo-
rological forecasts do not always capture these
extreme events. The spread, or distance between the
exceedance probability lines, is increasing with
increasing lead time, which indicates more uncer-
tainty in the forecasts at longer lead times.

Figure 4 shows the ensemble forecast results for
the South Fork of the Boise River Basin during the
2004 snowmelt season, which was a low-flow year
(Harshburger et al., 2010). The ensemble forecast
results are very similar to those presented in Fig-
ure 3 and degrade with increasing lead time.

In addition to the forecast hydrographs, the coeffi-
cient of determination (R?), percentage of volume dif-
ference (Dv%), and skill score statistic are used to
assess the accuracy of the ensemble streamflow fore-
casts. The R? value is used to evaluate the goodness
of fit for the mean streamflow ensemble and is a
direct measure of the proportion of the variance of
the measured flow that is explained by the forecasted
flow (Kite, 1975). The Dv% statistic is used to esti-
mate the bias in the model simulations. Negative
Dv% values indicate that the mean streamflow
ensemble is overpredicting the observed flow, and
positive values indicate that the ensemble forecast is
underpredicting. Finally, a quantitative skill metric
(skill score) is used to assess the performance of the
ensemble forecasts relative to the climatology. Mean-
squared error values are calculated for each of the 16
streamflow forecast ensemble members, relative to
the observed streamflow, and the average of these
squared errors over all ensemble members is calcu-
lated. This process is also completed using climatolog-
ical (historical) streamflow values, in a similar way.
The skill score statistic is calculated using the follow-
ing equation:

ZN (forecast,—observed,)?

i=1 N (2)
M (climatology,-observed,)®’
7

Zj:l

Skill score =1 —

where N is the number of forecast ensemble members
and M is the number of climatological observations. A
skill score value of 1.0 indicates a perfect forecast, a
skill of 0.0 is equivalent to climatology, and a nega-
tive value means that the climatology outperforms
the ensemble forecast. The skill score statistic
rewards accuracy, but punishes forecast spread.
Figure 5 is used to illustrate how the R? values for
the mean ensemble member vary with forecast lead
time. Separate plots were generated for each of the
three basins and each line represents a different fore-
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cast year. As can be seen, the R? values generally
range from about 0.9 to 0.95 out 1 day to anywhere
from 0.6 to 0.8 out 15 days. At lead times of seven
days, the R? values are typically greater than about
0.70-0.75. There are, however, two exceptions. The R*
values for the 2004 snowmelt season decrease at a
greater rate with forecast lead time than those for the
other forecast years in both the Big Wood and South
Fork of the Boise River Basins (Figures 5a and 5b).
This result is significant as both of these basins expe-
rienced abnormally low flows during the 2004 snow-
melt season (Harshburger et al., 2010). However, the
same decrease is not seen in the R? values for the
North Fork of the Clearwater Basin for the 2005 snow-
melt season, which also had abnormally low flows.

In addition to the plots in Figure 5, the average R>
values using the mean ensemble member for each of
the three basins are listed in Table 2. Values are pro-
vided for forecast lead times 1-5, 7, 10, and 15 days.
Average R? values for the four forecast years were used
to limit the amount of data presented in the table. The
average RZ values are very comparable for all three
stations and range from 0.96 at a lead time of 1 day to
0.58 at a lead time of 15 days. As seen in Figure 5, the
R? values decrease with increasing lead time.

Figure 6 illustrates how the Dv% values for the
mean ensemble member vary with forecast lead time.
Separate plots were generated for each of the three
basins and each line represents a different forecast
year. The Dv% values for the mean ensemble member
generally increase steadily as the forecast lead time
increases. This indicates that the mean ensemble is
underpredicting the actual flow more as the lead time
increases. As the Dv% values at early forecast lead
times (i.e., 1-day) are indicative of the level of error
in discharge due to model errors, the steady increase
with lead time is attributable to meteorological fore-
cast errors, especially the inability of the mean
ensemble member to forecast events far in advance
that trigger large flow volumes, such as significant
increases in temperature or large rainfall events. Pre-
dicted flows for the Big Wood and South Fork of the
Boise River Basins during all years were nearly unbi-
ased (within about +10%) out to a lead time of seven
days.

Table 2 also contains average Dv% values for each
of the three basins. The results shown in the table
indicate that the average Dv% values for the Big
Wood and South Fork of the Boise River Basins are
at or below 10% at a lead time of 10 days. However,
the Dv% values are much higher for the North Fork
of the Clearwater Basin. To assess the reasons for
the inflated Dv% for the North Fork of the Clearwa-
ter, Dv% values were plotted against the number of
rain-on-snow days (Figure 7). This was completed for
each basin and year. Rain-on-snow was deemed to
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FIGURE 5. The Coefficient of Determination (R?) for the Mean Ensemble as a Function of Forecast Lead Time for Years 2003, 2004, 2005,
and 2006 for the (a) Big Wood, (b) South Fork of the Boise, and (c) North Fork of the Clearwater Basins.
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FIGURE 6. The Percentage of Volume Difference (Dv%) for the Mean Ensemble as a Function of Forecast Lead Time for Years 2003, 2004,
2005, and 2006 for the (a) Big Wood, (b) South Fork of the Boise, and (c¢) North Fork of the Clearwater Basins. Negative values indicate that
the mean streamflow ensemble is overpredicting the observed flow, whereas positive values indicate that the ensemble forecast is underpre-
dicting the observed flow.
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have occurred if over half of the basin was experienc-
ing rain falling on the snowpack (determined from
SCA data) and if the rainfall amount exceeded
0.25 cm during a 24-h period. The results shown in
Figure 7 indicate that the North Fork of the Clearwa-
ter receives rain-on-snow more regularly than the
other two basins, which might explain why it gener-
ally has higher Dv% values.

Figure 8 is used to illustrate how the skill score
statistics for the ensemble streamflow forecasts vary
with forecast lead time. Separate plots were gener-
ated for each of the three basins and each line repre-
sents a different forecast year. The skill score values
generally range from about 0.8 at a lead time of
1 day to anywhere from 0.8 to 0.2 at 15 days,
although one case (North Fork of the Clearwater in
2006) is negative. This indicates that the ensemble
forecasts generally outperform the climatology even
at forecast lead times of up to 15 days. Skill score val-
ues generally degrade with increasing lead time,
which can be explained by the fact that the forecasts
generally degrade at these longer lead times
(Figures 3 and 4). The skill score values for the North
Fork of the Clearwater Basin for the 2006 snowmelt
season go below zero at a lead time of 13 days
(Figure 8c), which illustrates that the climatology is
outperforming the ensembles at these lead times for
this particular case. This is perplexing, however,
because the skill score values were much higher for
the other three years, and the North Fork of the
Clearwater did not experience an abnormally large
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FIGURE 7. The Percentage of Volume Difference (Dv%) Plotted as
a Function of the Number of Days with Rain-on-Snow for the 2003,
2004, 2005, and 2006 Snowmelt Seasons. The data for the Big
Wood Basin, the South Fork of the Boise, and the North Fork of
the Clearwater are shown as polygons to more easily visualize the
parameter space of each basin.
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amount of rain-on-snow events during the 2006 snow-
melt season (Figure 7). The skill score values are also
generally higher for the low-flow years (2004 for the
Big Wood and South Fork of the Boise and 2005 for
the North Fork of the Clearwater) than for the high-
flow years.

Table 2 contains average skill score values for each
of the three basins. The average skill scores are simi-
lar for each of the three basins; however, they are
slightly lower for the North Fork of the Clearwater.
The average values for the basins range from 0.83 to
0.57 for lead times of up to 7 days, but still have posi-
tive values of between 0.63 and 0.28 for lead times
between 10 and 15 days. This indicates that, on aver-
age, the ensemble prediction system outperforms the
assumption of climatology for all lead times.

Figures 9 and 10 are used to compare average R>
and Dv% values for the mean ensemble member with
values obtained for single deterministic forecasts for
the same basins and years (Harshburger et al., 2010).
The R? results indicate that there is significantly less
bias in the ensemble predictions. The Dv% values for
the mean ensemble are typically slightly less than
those for the deterministic forecasts, but are compa-
rable for both approaches. However, in addition to
improved performance, the ensemble forecasts pro-
vide the user with information regarding how likely a
forecast is to be correct.

CONCLUSIONS

A new methodology was developed and tested for
the generation of short-to-medium range ensemble
streamflow forecasts (1 to 15 days) using an enhanced
version of the SRM. Although SRM has been tested
in numerous basins around the world, it has not been
widely used to generate ensemble streamflow fore-
casts. Enhancements were made to the model to opti-
mize model efficiency and aid in its operational
implementation. The ensemble approach described
here generates 15 different realizations of the poten-
tial streamflow in three basins in Idaho for the years
2003, 2004, 2005, and 2006. The results from the
ensemble streamflow forecasts indicate that the
model performed very well at lead times up to 7 days;
however, there was still some predictability at the
longer lead times up to 15 days. The model performed
well in years with average to above-average flows, as
well as low-flow years. Hydrographs of the forecasted
streamflow show that the timing of peak flow and the
overall measured streamflow are captured well by the
ensemble modeling approach. However, the value of
the predicted peak flow is typically low relative to the
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FIGURE 8. The Skill Score Values for the Mean Ensemble as a Function of Forecast Lead Time for Years
2003, 2004, 2005, and 2006 for the (a) Big Wood, (b) South Fork of the Boise, and (c) North Fork of the Clearwater
Basins. A positive skill score indicates that the ensemble forecasts outperform the assumption of climatology.
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Single, Deterministic Forecasts (dashed lines) from Harshburger et al. (2010) for Various Forecast Lead Times. Forecast results are shown

for the (a) Big Wood, (b) the South Fork of the Boise, and (c) the North Fork of the Clearwater Basins.
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FIGURE 10. Comparison of the Average Percentage of Volume Dif-
ference (Dv%) for the Mean Ensemble Member (solid lines) and
Results for Single, Deterministic Forecasts (dashed lines) Obtained
from Harshburger et al. (2010) as a Function of Forecast Lead
Time. The results are shown for the Big Wood, the South Fork of
the Boise, and the North Fork of the Clearwater Basins.

measured peak flow. The performance of the ensem-
ble approach was assessed by computing the coeffi-
cient of determination (R?), the percentage of volume
difference (Dv%), and a skill score that quantifies the
usefulness of the forecasts relative to climatology.
The average R? value for the mean ensemble is
greater than about 0.8 for all three basins for lead
times up to seven days. These results are better than
those found by Harshburger et al. (2010) for single,
deterministic forecasts (average R? value of 0.73 at a
lead time of seven days). Two of the basins (Big Wood
and South Fork of the Boise) are fairly unbiased
(within £10%) in terms of the streamflow volume at
lead times of up to seven days. The model underpre-
dicts the streamflow volume for the North Fork of the
Clearwater, which may be due to the large number of
rain-on-snow events that occur in that basin. The
average skill scores for the basins are greater than
about 0.6 for lead times up to seven days, which indi-
cates that the ensemble forecasting system signifi-
cantly outperforms the assumption of climatology. As
the ensemble streamflow forecasting system was suc-
cessfully tested in three basins for four separate
years, there is potential for these methods to be
applied in other snowmelt-dominated basins. In addi-
tion, the simplicity of the model should make it rela-
tively easy for water managers and other operational
forecasters (i.e., federal agencies) to generate accu-
rate ensemble streamflow forecasts in a timely man-
ner.
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