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Irrigation of citrus (Citrus aurantium L. × Citrus paradise Macf.) 
with urban reclaimed wastewater (RWW) can be economical 
and conserve fresh water. However, concerns remain regarding 
its deleterious eff ects on soil quality. We investigated the ionic 
speciation (ISP) of RWW and potential impacts of 11 yr of irrigation 
with RWW on soil quality, compared with well-water (WW) 
irrigation. Most of nutrients (~53–99%) in RWW are free ionic 
species and readily available for plant uptake, such as: NH4

+, NO3
−, 

K+, Ca2+, Mg2+, SO4
2−, H3BO3, Cl−, Fe2+, Mn2+, Zn2+, Co2+, and Ni2+, 

whereas more than about 80% of Cu, Cr, Pb, and Al are complexed 
with CO3

−, OH−, and/or organic matter. Th e RWW irrigation 
increased the availability and total concentrations of nutrients 
and nonessential elements, and soil salinity and sodicity by two to 
three times compared with WW-irrigated soils. Although RWW 
irrigation changed many soil parameters, no diff erence in citrus yield 
was observed. Th e risk of negative impacts from RWW irrigation on 
soil quality appears to be minimal because of: (i) adequate quality of 
RWW, according to USEPA limits; (ii) low concentrations of metals 
in soil aft er 11 yr of irrigation with RWW; and (iii) rapid leaching of 
salts in RWW-irrigated soil during the rainy season.
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World population is projected to grow from 
6.8 billion today to 9.1 billion by 2050 (Nature, 
2010), which will consequently increase com-

petition for fresh water resources. Benefi cial reuse of urban 
reclaimed wastewater (RWW) could be one solution to this 
challenge (O’Connor et al., 2008). Irrigation with urban RWW 
is becoming a common practice in suburban areas of major cities 
(Biggs and Jiang, 2009) due to low transport costs and benefi ts, 
including savings in water and fertilizer costs, and reduced pol-
lutant discharges downstream (Anderson, 2003). In 1995, only 
2% of RWW was reused in the United States, but it recently has 
increased to 7.4% (of the total 9.8 × 106 m3 d−1) at a rate of 15% 
rise in usage per year (Miller, 2006; O’Connor et al., 2008). In 
Florida, ~5300 ha of edible crop, such as citrus, tomatoes, straw-
berries, peas, beans, corn, and herbs, were irrigated with RWW 
in 2010 (FDEP, 2010).

Reclaimed wastewater irrigation is a source of macronutrients 
(N, P, K, S, Ca, Mg) (Barton et al., 2005; Jaiswal and Elliott, 
2011; Sophocleous et al., 2009) and micronutrients (B, Cl, Cu, 
Co, Zn, Fe, Mn, Mo, Ni) (Pedrero and Alarcón, 2009; Xu et al., 
2010), but they may not be in a balanced supply to meet plant 
nutritional needs. Th e RWW may also contain nonessential/
toxic elements, such as Na, Al, Cd, Cr, and Pb. Th erefore, one 
of the concerns regarding the use of RWW for irrigation in 
agriculture is its impact on soil quality, such as increases in heavy 
metals, salinity, and sodicity (Biggs and Jiang, 2009; Darvishi 
et al., 2010; Pedrero and Alarcón, 2009; Reboll et al., 2000; 
USEPA, 2004). Some micronutrients, especially B and Cl, and 
nonessential elements (Na, Al, Pb, Cd, Cr), were reported to 
accumulate in soil and plant aft er long-term irrigation, depending 
on the quality of RWW, irrigation rate, soil properties, and crop 
usage (van Oort et al., 2008; Pedrero et al., 2010; Rusan et al., 
2007; Singh et al., 2009; Toze, 2006).

Many previous studies report total concentration of 
elements in RWW (Biggs and Jiang, 2009; Klay et al., 2010; 
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Qian and Mecham, 2005) and oft en lack indications as to their 
bioavailability, mobility, and fate in soil (D’Amore et al., 2005). 
Th e ionic speciation (ISP) of elements can help overcome this 
defi ciency of information (Sparks, 2003). Free ionic species in 
soil solution, such as Mg2+, K+, Ca2+, Mn2+, Co2+, Cu2+, Zn2+, and 
Fe2+, are readily available for plant uptake (Sposito, 2008). Higher 
plant response to nutrient additions is usually correlated with the 
activity of free ions in solution (Mn+) and largely indiff erent to 
metal–ligand complexes (ML) (Parker and Pedler, 1997).

Th e interest in RWW irrigation for citrus in Brazil, the United 
States, and Spain has been recently increased as an alternative 
source of water and nutrients (Aucejo et al., 1997; Fonseca et al., 
2007; Morgan et al., 2008; Pedrero and Alarcón, 2009; Pereira 
et al., 2011a; Reboll et al., 2000). For the safe use of RWW in 
agriculture, it is necessary to critically examine its eff ects on soil 
quality, particularly chemical properties using long-term fi eld 
trials, compared with the common practice of well-water (WW) 
irrigation. In addition, there is limited information available 
on the ISP of RWW and the infl uence of long-term irrigation 
with RWW on soil quality in perennial citrus crop production 
systems. Th e objectives of this study were to: (i) determine plant 
availability of macronutrients and micronutrients, as well as 
nonessential elements in RWW using an ion-speciation model; 
and (ii) examine the potential impact of long-term irrigation 
with RWW on soil quality, including salinity, sodicity, nutrient 
concentration, and accumulation of nonessential elements.

Materials and Methods
Area Description and Irrigation System

Th is study was conducted in a commercial citrus grove in South 
Florida, USA. Th e soil is a loamy, siliceous, hyperthermic, Arenic 
Glossaqualfs (USDA, 1980). Physical and chemical characteristics 
of the soil were measured before fi eld trials (Table 1). Two citrus 
blocks, each 8.1 ha, were selected based on similar soil properties, 
rate of irrigation, citrus cultivar, and tree density. Both blocks were 
planted with grapefruit (Citrus paradise Macf.) graft ed on sour 
orange (Citrus aurantium L.) on an 8-m by 5-m spacing. One 
block was irrigated with urban RWW and other, the control, with 
WW (conventional source of irrigation water). Citrus trees were 
transplanted in 1982 for RWW and 1974 for the WW block. In 
the respective blocks, RWW and WW have been applied from 
1997 through 2008 with micro-irrigation system, according to 
daily crop reference evapotranspiration estimated by Penman–
Monteith equation (Allen et al., 1998). At the annual rate of 518 

mm for RWW and 485 mm for WW, 360° microsprinklers (60.5 
L h−1) were used. Dry granular fertilizers were applied annually 
during the 11-yr period at 450 kg ha−1 (14–0–18 + 3 Mg) in 
spring, 450 kg ha−1 (12–0–16 + 3 Mg) in early summer, and 225 
kg ha−1 (14–0–16 + 3 Mg) in autumn. In addition, 2.2 kg ha−1 of 
liquid fertilizers (0–29–26) were sprayed twice per year.

Field Sampling and Laboratory Analysis
Soil Sampling and Analysis

In 2008, aft er 11 yr of irrigation with RWW or WW, soil 
samples were collected. Four grids (replications) were randomly 
distributed on each block. Each grid was 0.14 ha2 and used 
to collect fi ve soil cores to make one composite sample. Th e 
sampling points were previously located using Google Earth and 
a GPS instrument with accuracy of ±3 m. Th e soil samples were 
collected in April 2008, at the depth of 0 to 15, 15 to 30, 30 to 
45, and 45 to 90 cm, using a bucket auger within the area wetted 
by the irrigation system (~1.0 m from the emitter and ~1.0 m 
from the trunk). A total of 80 soil samples were collected per 
block (20 points × 4 depths).

Air-dried soils were ground to <2 mm particle size before 
chemical analyses. Soil salinity was estimated by electrical 
conductivity (EC) at a soil:water ratio of 1:2 (Rhoades, 1996). 
Th e pH was determined in CaCl2 (0.01 M) at 1:1 soil:water 
ratio (Th omas, 1996), using a pH/conductivity meter (Model 
220, Denver Instrument Inc.). Total carbon and total nitrogen 
(TN) were determined using a CN analyzer (Vario Max CN, 
Elemental Analysensystem GmbH). A KCl (2 M) extraction 
procedure was used to estimate available N (NO3

− and NH4
+). 

Concentrations of NO3
−-N and NH4

+-N in the extracts were 
determined using an auto analyzer (Easychem plus, Systea 
Scientifi c Inc). Extractable P, K, Ca, Mg, Mn, Mo, Cu, Fe, Al, 
Cd, Cr, Ni, Pb, and Zn in soil were estimated by the Mehlich-3 
(M-3) method (Mehlich, 1984) and concentrations of the 
elements in extracts were determined using inductively coupled 
plasma–optical emission spectrometry (ICP–OES, Ultima, 
JY Horiba). Samples (0.2 g each) of surface soil (0–15 cm) 
were digested following USEPA Method 3050B to determine 
total recoverable metals (Cd, Co, Cu, Cr, Mo, Ni, Pb, and Zn) 
(USEPA, 1996). Available B in soil was extracted with hot water 
(Keren, 1996) and extracts were analyzed for B using ICP–OES. 
Saturated paste was prepared to obtain suffi  cient soil solution 
by centrifugation, which was then used for the determination of 
Ca, Mg, SO4, Cl, and Na concentrations (Wolt, 1994). Sulfate 

Table 1. Basic physical and chemical properties of the studied soil.†

Depth Sand Silt Clay
Bulk 

density

Exchangeable cations Exchangeable 
acidity

CEC‡ BS‡ OC‡ EC‡ pH
CaCl2Ca Mg Na K

cm ———— % ———— g cm-3 ——————————— cmol
c
 kg−1 ——————————— ——% —— μS cm−1

0–7 90.1 8.6 1.3 1.1 9.45 0.71 0.30 0.07 4.0 14.50 73 3.4 260 6.3

7–15 96.8 2.5 0.7 1.4 2.41 0.16 0.11 0.01 0.5 3.21 84 0.5 180 7.3

15–30 97.5 1.3 1.2 1.5 2.38 0.12 0.11 0.01 0.4 3.05 87 0.4 150 7.5

30–53 97.0 0.6 2.4 1.5 0.74 0.06 0.15 <DL§ 0.2 1.12 86 0.1 250 7.4

53–86 97.2 1.0 1.8 1.6 0.54 0.04 0.11 <DL 0.3 0.95 76 0.1 380 6.1

86–96 96.7 1.2 2.1 1.6 1.24 0.12 0.29 <DL 0.4 2.08 79 0.1 550 6.6

† Adapted from Soil Survey (USDA, 1980).

‡ CEC = cation exchange capacity; BS = base saturation; OC = organic carbon; EC = electrical conductivity.

§ <DL, below detection limit (0.005 cmol
c
 kg−1).
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and Cl− were analyzed using an Ion Chromatograph (DX 500; 
Dionex Corporation). Sodium, Ca, and Mg were determined 
by ICP–OES and soil sodicity was estimated by the sodium 
adsorption ratio (SAR) equation (Richards, 1954).

Reclaimed Wastewater and Well-water Analysis

Th e urban RWW was provided by a municipal wastewater 
treatment plant (WTP) in Okeechobee, FL. Th e primary treatment 
of wastewater removed heavy solids and fl oatable materials, whereas 
the secondary treatment consisted of extended aeration and chlorine 
disinfection. Ninety RWW samples were collected and analyzed 
at the WTP from 2001 to 2008, whereas fi ve WW samples were 
collected from the microsprinklers in the WW-irrigated block in 
2008. Th e RWW and WW samples were analyzed according to 
the following methods: EC (American Public Health Association, 
1992), pH, biochemical oxygen demand (5 d at 20°C), chemical 
oxygen demand, total Kjeldahl N, total P, total suspended solids, 
NO3

−-N, NO2
−-N, PO4

3−–P, SO4
2−–S, B, Ca, Cu, Fe, K, Mn, Na, 

Zn, Cd, Cr, Al, Mg, Ni, Pb, and Se (USEPA, 1983), and Li (USEPA, 
1986). Th e ISP of relevant elements in RWW was conducted 
using a geochemical model where the measured concentrations of 
elements were used as inputs to the visual MINTEQ version 3.0, β 
(Gustafsson, 2010). Th e organic ligands were estimated according 
to the “Gaussian DOM” model (Grimm et al., 1991), oversaturated 
solids were allowed to precipitate, the ionic strength was calculated, 
and the pH was fi xed as determined in RWW. A concentration of 5.9 
mg dissolved organic carbon L−1 was used for RWW (Jarusutthirak 
et al., 2002). Th e concentration of silicon was not considered in this 
model on the belief that alumino-silicate minerals are minimal in 
the municipal wastewater

Statistical Analysis
Means and standard errors of analyzed parameters were used 

to compare statistical diff erences between RWW and WW 
(Table 2). Th e Shapiro–Wilk test (P > 0.05) was used to evaluate 
the normality of the data of yield and dependent variables 
analyzed in soil. Th en, the t-test at P < 0.05 was used to compare 
the eff ect of RWW with that of WW. Data for total recoverable 
concentrations of Cd, Co, Cu, Cr, Mo, Ni, Pb, and Zn were 
analyzed for the 0- to15-cm layer (Table 3). For pH, EC, SAR, 
saturated past extracted elements, and M-3 solution extracted 
elements, mean values at all depths were compared between the 
two water sources (Fig. 1 and 2).

Results and Discussion
Characteristics of Reclaimed Wastewater, Well Water, 

and Ionic Speciation
Th e RWW contained greater concentrations of nutrients and 

nonessential elements, except for Al and Ca, than WW (Table 
2). Th e charge balance of ISP in RWW was ~12%, revealing a 
proper ionic distribution. Th us, the data are adequate for ISP 
calculation. Charge imbalance >30% is considered improper 
for the purpose of ISP calculation (Allison et al., 1991). Th e ISP 
revealed that the majority of macronutrients (NO3

−, NH4
+, K+, 

Mg2+, SO4
2−), micronutrients (H3BO3, Cl−, Co2+, Mn2+, Ni2+, 

Zn2+), and some nonessential elements (Ba2+, Cd2+, and Li2+) 
were present as free ionic species (Table 2). Free ionic species 
in soil solution are readily available for plants (Sposito, 2008). 

However, dissolved Cu, Cr, Pb, and Al were mostly bound with 
CO3

−, OH−, and dissolved organic matter at pH 8.1 (Table 
2), thereby decreasing their ionic activity, bioavailability, and 
potential phytotoxicity (Wolt, 1994). Th e free metal ions (Mn+) 
are generally the most bioavailable and toxic form of metals 
(McLean and Bledsoe, 1992).

In general, RWW is suitable for irrigation in agriculture, 
according to the measured properties. Reclaimed wastewater 
pH, SAR, alkalinity, biological oxygen demand, total suspended 
solids (TSS), nutrients (N, P, K, Ca, Mg, S, B, Cl, Cu, Fe, Zn), 
nonessential elements (Cd, Co, Cr, Pb, Se, and Al), and counts of 
pathogens (Escherichia coli and fecal coliforms) (Table 2) did not 
exceed reference limits established by USEPA (2004) or suggested 
by previous studies (Fatta et al., 2004; FAO, 1992; Feigin et al., 
1991; James et al., 1982; Reboll et al., 2000; USEPA, 2004).

Total elemental concentrations in RWW decreased in 
the order of Ca > SO4

−2 > K > Mg > NO3
−- N > PO4

3−–P > 
NH4

+-N for macronutrients, Cl > B > Zn > Fe > Cu = Mn > 
Ni for micronutrients, and Na > Al > Pb > Ba = Cr = Co > Cd 
for nonessential elements (Table 2). Th e elemental abundance 
suggested an imbalanced supply of nutrients in RWW, compared 
with the standard Hoagland nutrition solution (Epstein and 
Bloom, 2005) used for growing many plant species, which are: 
N > K > Ca > P > S > Mg for macronutrients and Fe > Cl > B > 
Mn > Zn > Cu = Ni for micronutrients.

Th e quality of WW used in this study is also adequate for 
irrigation. According to Food and Agriculture Organization 
irrigation water quality guidelines (FAO, 1985), WW used 
for irrigation was classifi ed as slight degree of salinity, slight 
potential to aff ect rate of infi ltration into the soil, no risk of Na, 
Cl, and B toxicity, and pH at a normal range.

Soil Sodicity and Salinity

Reclaimed wastewater irrigation increased soil salinity (EC) 
by about two to three times and soil sodicity (SAR) at all soil 
depths (Fig. 1). Soil pH was not signifi cantly aff ected compared 
with WW irrigation. A higher concentration of Na in RWW 
than WW (Table 2) contributed to the increased soil sodicity 
and salinity (Fig. 1). Similar results were reported by Qian and 
Mecham (2005) aft er 5 yr of urban RWW irrigation of Renohill 
soil cultivated with ryegrass (Lolium perenne L.). However, 
they found higher values of SAR of 9.3 and EC of 4.3 dS m−1, 
compared with the present study (Fig. 1).

Soil sodicity is usually evaluated with soil properties, such as 
pH, EC, and SAR, to identify the potential risk and negative 
eff ects on plant health and soil fertility. In general, if soil pH is 
<8.5, EC <4000 μS cm−1 with a SAR <13, the soil is considered 
suitable for agriculture (Brady and Weil, 2008). In this study, 
these three variables were lower than those critical values aft er 
11 yr of irrigation with RWW for all soil depths (Fig. 1). Th us, 
there was a minimal infl uence of RWW on salinity and sodicity 
in the studied soil.

Th e salinization potential of a soil aft er long-term irrigation 
with RWW is also dependent on soil and climate conditions. An 
annual irrigation rate of 400 mm was reported to leach 80% of 
the salts in a loamy soil (Chesworth, 2008). Th e average annual 
precipitation in the studied area was 1372 mm yr−1 (NCDC, 
2009); therefore, a large portion of salts from the RWW 
irrigation would be leached during the rainy season. Despite 
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the low salinization potential of RWW to a soil, further studies 
are needed to evaluate possible impacts on groundwater. Th e 
combination of high annual rainfall, sandy soils, and shallow 
water tables in Florida increases the risk of groundwater 
contamination (Syvertsen et al., 1993).

Macronutrients
Total organic C in the RWW-irrigated soils increased 

slightly (~2%) at the depth of 30 to 45 cm and no diff erence 
was observed in the other soil depths. Th is may be attributed to 
the following factors: (i) direct C input through RWW (Xu et 

Table 2. Mean (± SE) values of variables in the well water (WW) (n = 5) and reclaimed wastewater (RWW) (n = 90). The reference limits to reuse 
reclaimed wastewater for irrigation (2001–2008) and predominant ionic species in RWW.

Variables Unit
WW RWW Limits to 

RWW
Predominant ionic species in RWW†

Mean ± SE

pH – 7.3 ± 0.1 8.1 ± 0.1 9‡ –

SAR§ – 0.9 3.7 ± 0.1 7.9¶ –

Na:Ca§ – 0.3 2.0 3# –

Alkalinity (HCO
3
−) mg L−1 – 150.6 ± 3.0 700¶ HCO

3
− (95.3%); H

2
CO

3
 (1.5%)

BOD§ mg L−1 – 13.9 ± 3.4 60‡ –

COD§ mg O
2
 L−1 – 64.4 ± 2.1 200‡ –

EC§ μS cm−1 522.0 ± 26.1 995.0 ± 15.2 2000†† –

Turbidity NTU§ 1.1 ± 0.9 12.7 ± 0.9 50‡ –

TSS§ mg L−1 – 17.5 ± 1.1 50‡ –

NO
3
−-N mg L−1 0.3 ± 0.2 5.7 ± 0.3 50‡ NO

3
− (99.6%)

NO
2
−-N mg L−1 <DL 0.5 ± 0.2 10¶ NO

2
− (99.9%)

NH
4

+-N mg L−1 0.1 ± 0.0 1.47 ± 0.2 40¶ NH
4

+ (93.6%); NH
3
 (6.0%)

PO
4

3−–P mg L−1 <DL 2.2 ± 0.2 30‡ HPO
4

2− (63.0%); CaHPO
4
 (15.7%)

SO
4

2−–S mg L−1 2.7 ± 0.0 24.47 ± 5.7 500‡ SO
4

2− (84.9%); CaSO
4
 (10.6%)

TKN§ mg L−1 – 4.1 ± 0.4 – –

TP§ mg L−1 – 2.9 ± 0.2 – –

Ba mg L−1 – 0.01 ± 0.005 2‡ Ba2+ (92.5); BaDOM‡‡ (1.8%)

B mg L−1 0.1 ± 0.01 0.31 ± 0.01 0.75# H
3
BO

3
 (92%); H

2
BO

3
− (7.5%)

Ca mg L−1 88.3 ± 2.8 60.6 ± 1.0 120¶ Ca2+ (88.7%); CaSO
4
 (5.5%)

Cl mg L−1 28.0 ± 8.1 232.6 ± 14.9 360§§ Cl− (99.5%)

Cu mg L−1 <DL 0.01 ± 0.005 0.2¶¶,‡,# CuCO
3
 (84.4%); CuOH (5.2%); Cu(CO

3
)

2
2− (4.4%); Cu2+ (1.8%)

Fe mg L−1 <DL 0.05 ± 0.005 5¶¶,#,‡ Fe2+ (83.5%); FeHPO
4
 (6.0%)

K mg L−1 3.8 ± 0.1 17.1 ± 0.3 40¶ K+ (99.4%)

Mn mg L−1 <DL 0.01 ± 0.005 0.2#,¶¶,‡ Mn2+ (65.5%); MnCO
3
 (25.8%)

Na mg L−1 23.6 ± 0.06 122.1 ± 2.7 200‡ Na+ (99.4%)

Zn mg L−1 0.01 0.06 ± 0.005 2¶¶,#,‡ Zn2+ (53.2%); ZnOH+ (4.8%); Zn(OH)
2
(6.9%); ZnCO

3
 (24.1%)

Cd mg L−1 <DL 0.001 0.01¶¶,# Cd2+ (56.7%); CdCO
3
 (10.4%); CdCl+(18.4%); CdHPO

4
 (10.4%)

Co mg L−1 <DL 0.01 ± 0.005 0.05¶¶,# Co2+ (73.2%); CoCO3 (11.0%)

Cr mg L−1 <DL 0.01 ± 0.005 0.1¶¶,# CrOH+ (99.9%)

Li mg L−1 – 0.007 ± 0.002 2.5¶¶,# Li+ (99.5%)

Mg mg L−1 8.9 ± 0.2 11.1 ± 0.4 50‡¶ Mg2+ (91.1%); MgSO
4
 (4.5%)

Ni mg L−1 <DL 0.008 0.2¶¶,#,‡
Ni2+ (67.7%); NiCO

3
(18.3%); NiHCO

3
+ (11.54%); NiSO4 (3.4%); 

Ni DOM (1.9%)

Pb mg L−1 0.01 ± 0.00 0.04 ± 0.01 5#,¶¶ Pb DOM (40.4%); PbCO
3
 (43.5%); PbOH+ (3.7%); Pb2+ (1.6%)

Se mg L−1 – <DL 0.02¶¶,# –

Al mg L−1 1.2 ± 0.3 0.7 ± 0.1 5¶¶,#,‡ Al(OH)
4
− (98.5%); Al(OH)

3
 (1.4%)

Escherichia coli 100 mL−1 <DL <DL – –

Total coliforms 100 mL−1 <DL <DL – –

† Calculated with Visual Minteq 2.61; charge balance of 12.8%. <DL = below detection limit (NO
2
–N 0.01, PO

4
3–P 0.01, Cu 0.005, Fe 0.006, Mn 0.001, Cd 

0.0005, Co 0.0007, Cr 0.0006, Ni 0.001, and Se 0.01 mg L−1).

‡ Fatta et al. (2004).

§ SAR = sodium adsorption ratio; Na:Ca = ratio of sodium to calcium; BOD = biochemical oxygen demand; COD = chemical oxygen demand; EC = electri-

cal conductivity; NTU = nephelometric turbidity units; TSS = total suspended solids; TKN = total Kjeldahl nitrogen; TP = total phosphorus.

¶ Feigin et al. (1991).

# USEPA (2004).

† † James et al. (1982). 

‡ ‡ Dissolved organic matter.

§ § Reboll et al. (2000).

¶¶ FAO (1992).
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al., 2010) due to the presence of dissolved organic matter (cell 
fragments and macromolecules) (Adrover et al., 2012); and (ii) 
RWW promotes higher biomass production (roots, trunk, and 
canopy) of citrus in Florida (Parsons et al., 2001), thus increasing 
C stock in the soil.

Irrigation with RWW increased TN and extractable NH4
+-N 

and NO3
−-N, mainly at the surface layer (Fig. 1), as a consequence 

of NH4
+ and NO3

− inputs in RWW (Table 2). Leaching of 
NO3

− is a concern in RWW irrigation (Sophocleous et al., 
2009), particularly when associated with heavy applications of 
N fertilizers (USEPA, 2004). However, N addition from RWW 
seems insignifi cant based on the annual irrigation rate and total 
Kjeldahl nitrogen concentration in RWW (Table 2). Th e RWW 
added ~21 kg of N ha−1 yr−1, compared with ~180 kg of N ha−1 
yr−1 applied in fertilizers, which accounted for only ~10% of the 
total N inputs. Th e total N value is still within the recommended 
level of N fertilizers for citrus in Florida, which is 156 to 291 kg−1 
of N ha−1 yr−1 (Obreza and Morgan, 2008).

Mehlich-3 extractable P in the soil irrigated with RWW 
increased in the 0- to 40-cm layer (~500% higher), reaching 
>56 mg kg−1 (Fig. 1), which is considered high, according to 
the citrus nutrition guideline for Florida (Obreza and Morgan, 
2008). However, M-3 extractable P remained below the 
environmental threshold concentration of 150 mg kg−1 (Sims et 
al., 2002). Increased P concentration in the soil irrigated with 
RWW was expected. Usually the amount of P provided by 
RWW is higher than that removed by plants (USEPA, 2006). 
Palacios-Diaz et al. (2009) also reported higher concentration of 
extractable P (Olsen–P) in the soil irrigated with RWW, 22 to 50 
mg kg−1, compared with 14 to 22 mg kg−1 in the WW-irrigated 
soil. Aft er 12 yr of RWW irrigation, Jaiswal and Elliott (2011) 
reported that M-3 extractable P in a 0- to 15-cm layer of an 
Ultisol remained ~110 mg kg−1 but with a minimal impact on 
groundwater quality.

Extractable Mg increased in the 0- to 15-cm soil depth and SO4
2− 

increased at both the 15- to 30-cm and 45- to 90-cm soil depths with 
RWW compared with WW irrigation (Fig. 1). Magnesium and 
SO4

2− were predominant in RWW (Table 2) and their inputs to the 
soil were up to 57 and 126 kg ha−1 yr−1, respectively.

Mehlich-3 extractable Ca was higher with RWW in the 
deeper soil layers (>75 cm) (Fig. 2). Th e high Ca concentrations 
were probably attributed to the parent material of marine origin 
common in Riviera series. Th ese bedded parent materials were 
moved to the subsurface during land preparation, resulting in 
high Ca at that depth.

Micronutrients

Compared with WW-irrigated soil, extractable B increased 
~121% in the RWW-irrigated soil and was higher at the surface 
but decreased with soil depth (Fig. 2). Boron enrichment and 
potential phytotoxicity is one of the major concerns regarding 
RWW irrigation (Toze, 2006; Reboll et al., 2000). In the present 
study, B concentrations in the soil (Fig. 2) were below the 
critical level (1.3 mg kg−1) of B toxicity to citrus plants (Aucejo 
et al., 1997), even aft er 11 yr of irrigation. Reboll et al. (2000) 
observed a similar trend where B concentration increased by 0.4 
mg kg−1 aft er 3 yr of irrigation with RWW. Boron increased from 
0.32 to 0.59 mg kg−1 in the surface and 0.18 to 0.45 mg kg−1 in 
the subsurface soil due to RWW irrigation. In the worst-case 

scenario, if soil extractable B increased at a mean annual rate of 
0.025 mg kg−1 yr−1 [(0.45–0.18)/11 = 0.0245] at current RWW 
irrigation rates, it will take 52 yr (1.3/0.025 = 52) to reach the 
critical level of 1.3 mg B kg−1 soil. In the same area of study, Pereira 
et al. (2011b) found higher B concentrations on citrus leaves 
irrigated with RWW, but no toxicity symptoms were observed in 
fi eld. Th erefore, a B phytotoxicity problem is not likely to occur 
until RWW irrigation is extended for >50 yr. Qian and Mecham 
(2005) also reported that B accumulated in the soil, but no 
phytotoxicity occurred aft er 33 yr of irrigation with RWW.

Chloride concentration was increased by ~260% in surface 
soil and consistent along the soil profi le. Th e concentration 
of Cl in the RWW-irrigated soil (10.1 mg kg−1) (Fig. 2) was 
less than the range of 20 to 900 mg kg−1, commonly found in 
soils (Heckman, 2006); therefore, the risk of Cl phytotoxicity 
is minimal, even though it is the predominant micronutrient 
in RWW. Aft er 12 mo of irrigation with RWW, Pedrero and 
Alarcón (2009) reported >402 mg Cl kg−1 in the soil. However, 
no toxic symptoms were observed on citrus leaves.

Extractable Fe, Mn, Zn, Ni, Cu, and Co in the soils were 
greater with RWW than WW irrigation plots (Fig. 2). Major 
enrichment of these elements occurred at the 15- to 30- and 
30- to 45-cm soil layers. According to the ISP analysis of RWW, 
these elements were mostly found as free ionic species, ~83% as 
Fe2+, ~65% as Mn2+, ~53% as Zn2+, ~67% as Ni2+, and ~73% as 
Co2+ (Table 2). Th e free species added through RWW irrigation 
contributed to the increased M-3 extractable concentrations of 
these elements in soil. Consequently, RWW also increased the 
total recoverable concentrations of these nutrients, compared 
with the WW-treated plots (Table 3). Extractable Mo was below 
the detection limit, regardless of water sources, but its recoverable 
concentration increased by 200% (Table 3).

Although irrigation with RWW supplemented a signifi cant 
amount of Co, Mn, Mo, Ni, and Zn, their total recoverable 
concentrations in the irrigated soil were within the common 
concentration range found in soil, according to Chen et al. 
(1999) and Kabata-Pendias and Mukherjee (2007). Th erefore, 

Table 3. Mean concentration of total recoverable metals (USEPA 3050B) 
in surface soil (0–15 cm) irrigated with reclaimed wastewater (RWW) or 
well water (WW). Common concentration ranges of metals in soils.

Elements
RWW 
mean

WW 
mean

Common concentration 
ranges of metals in soil

___________ mg kg-1 ___________ mg kg−1

Co* 1.4 0.4 5.5–29.9†

Cu* 298 236 20–30‡

Mn* 89 50 10–9000‡

Mo* 1.2 0.4 0.1–7‡

Ni* 4.1 1.7 0.2–450‡

Zn* 63 39 10–300‡

Cdns§ 0.3 0.3 0.06–1.1‡

Crns 8 5.1 2–1100‡

Pb* 20 10 0.69–42‡

* Signifi cant diff erence at P ≤ 0.05 of total recoverable metals concentra-

tion between soil irrigated with RWW and WW according to the t test.

† Kabata-Pendias and Mukherjee (2007).

‡ Chen et al. (1999).

§ ns = no signifi cant diff erence based on t test.



www.agronomy.org • www.crops.org • www.soils.org 925

Fig. 2. Mean (n = 20) values of soil micronutrients (C, Cl, Fe, Cu, Mn, Zn, Ni, and Co) and nonessential elements (Cd, Cr, Pb, and Al) along the 
soil profi le irrigated with reclaimed wastewater (RWW) and well water (WW) at diff erent depths. B extracted with hot water; Cl extracted with 
saturated paste; Fe, Cu, Mn, Zn, Ni, Co, Cd, Cr, Pb, and Al extracted with Mehlich-3 solution. * indicates signifi cant diff erence at P ≤ 0.05 according to 
the t test; ns indicates no signifi cant diff erence to the t test.

Fig. 1. Mean (n = 20) values of pHCaCl
2
, electrical conductivity (EC), Na, sodium adsorption ratio (SAR), total carbon (TC), total nitrogen (TN), and 

macronutrients (NO
4

+, NO
3

−, P, Ca, Mg, and SO
4

2−) along the soil profi le irrigated with reclaimed wastewater (RWW) and well water (WW) at diff erent 
depths. The Na and SO

4
−2 extracted by saturated paste; NO

3
− and NH

4
+ extracted with KCl, 2 mol L−1; P, Ca, and Mg extracted with Mehlich-3 

solution. * indicates signifi cant diff erence P ≤ 0.05 according to the t test; ns indicates no signifi cant diff erence to the t test.
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RWW irrigation appears benefi cial to citrus production in soils 
with poor contents of those micronutrients.

Independent of irrigation water sources, total and M-3-
extractable concentrations of Cu in the soil was high compared 
with the common concentration range found in soils (Table 3, 
Fig. 2). Th e enrichment of Cu and also Zn in the citrus soil is 
likely attributed to the spraying of chemicals. According to He 
et al. (2005), chemical sprays can supplement 1 to 2 kg Cu ha−1 
yr−1 and 5 to 9 kg Zn ha−1 yr−1 to the citrus grove. Considering 
the annual irrigation rate and concentrations of Cu and Zn in 
RWW, the RWW irrigation annually adds only ~0.04 kg Cu ha−1 
and ~0.30 kg Zn ha−1 to the soils. Th e input from RWW should 
be minimal, compared with the annual application of Cu- and/
or Zn-containing fungicides and fertilizers. Nevertheless, it may 
be necessary to monitor Cu and Zn availability in the soils with 
long-term RWW irrigation, particularly under citrus production 
due to multiple pollution sources.

Unexpectedly, fruit yield between RWW (228 ± 57 kg 
tree−1) and WW (243 ± 115 kg tree−1) blocks from 1997–1998 
to 2007–2008 were similar. Although signifi cant (P < 0.05), 
eff ects of RWW on some soil variables were observed. Th ese 
changes may not be enough to raise citrus yield. Generally, the 
soil fertility of both RWW and WW blocks did not show any 
limiting factors for citrus production.

Nonessential Elements

Reclaimed wastewater irrigation increased extractable 
concentration (Fig. 2 and Table 3) of Cd, Cr, and Pb, and 
also the total recoverable concentration of Pb, compared with 
WW irrigation. Th e higher concentration of these elements in 
soil irrigated with RWW is attributed to their relatively higher 
concentrations in RWW compared with WW (Table 2).

Although Pb total recoverable concentration increased in soil 
aft er 11 yr of irrigation with RWW, it was within the common 
concentration range found in Florida soils (Table 3) and still 
below the soil cleanup target levels (SCTLs, 400 mg Pb kg−1) 
of Florida Department of Environmental Protection (FDEP, 
2005). Th e eff ect of RWW irrigation on the concentration of 
nonessential elements in soil is inconsistent in the literature. 
Rusan et al. (2007) did not report any change in Cd and Pb 
concentrations in the soil profi le aft er 10 yr of irrigation with 
RWW, whereas van Oort et al. (2008) observed signifi cant 
accumulation of Cd in soil aft er long-term irrigation of RWW.

Based on the average concentrations of Cd, Cr, and Pb in 
RWW (Table 2), the annual rate of irrigation (ARI) at 19,420 
L tree−1 yr−1 and the plant population (PP) of 250 trees ha−1, the 
total annual pollutant load for each metal (APLR) is estimated 
as: APLR = (element concentration in RWW) × ARI × PP. 
Th e calculated APLR for Cd, Cr, and Pb is ~5 g ha−1 yr−1, ~77 
g ha−1 yr−1, and ~208 g ha−1 yr−1, respectively. Th ese quantities 
are negligible compared with those standards (1900 g ha−1 yr−1, 
154,000 g ha−1 yr−1, and 15,000 g ha−1 yr−1, respectively, for Cd, 
Cr, and Pb) for biosolids application (USEPA, 1995).

Conclusions
Most nutrients in the studied RWW are present as free ions 

and readily available (~53–99%), whereas more than about 80% 
of Cu, Cr, Pb, and Al in RWW are complexed with CO3

−, OH−, 
and/or dissolved organic matter with reduced bioavailability.

Th e RWW irrigation generally increased total recoverable 
and extractable amounts of nutrients, except for Fe in the soil 
compared with the WW treatment, but no diff erence in citrus 
yields was measured. Reclaimed wastewater irrigation tended 
to increase soil sodicity and salinity, as well as B accumulation 
in the soil, but it unlikely results in any signifi cant salinization/
sodifi cation of the soil or B toxicity to the plant unless the RWW 
irrigation is extended beyond 40 to 50 yr.

Long-term irrigation with RWW potentially promotes 
the accumulation of Cd, Cr, and Pb in soil, but the risk of soil 
pollution with these elements is minimal because of their low 
concentrations in RWW.
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