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Failure to consider major sources of uncertainty may bias model predictions in simulating watershed
behavior. A framework entitled the Integrated Parameter Estimation and Uncertainty Analysis Tool
(IPEAT), was developed utilizing Bayesian inferences, an input error model and modified goodness-of-fit
statistics to incorporate uncertainty in parameter, model structure, input data, and calibration/validation
data in watershed modeling. Applications of the framework at the Eagle Creek Watershed in Indiana
shows that watershed behavior was more realistically represented when the four uncertainty sources
were considered jointly without having to embed watershed behavior constraints in auto-calibration.
Accounting for the major sources of uncertainty associated with watershed modeling produces more
realistic predictions, improves the quality of calibrated solutions, and consequently reduces predictive
uncertainty. IPEAT is an innovative tool to investigate and explore the significance of uncertainty sources,
which enhances watershed modeling by improved characterization and assessment of predictive
uncertainty.

� 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

The ability of watershed models to simulate and predict real
world phenomena has been considerably advanced in recent years.
Simultaneously, the number of model parameters in empirically or
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physically based functions has also increased (Yang et al., 2008; Bai
et al., 2009), which increases the difficulty of manual calibration.
Fortunately, through the progressive improvement of computer
science and development of auto-calibration techniques, compu-
tational expense of model calibration is no longer a major challenge
(Duan et al., 1992; Tolson and Shoemaker, 2007; Vrugt et al., 2009a;
Yen, 2012). Thus, modelers can now focus more attention on
appropriate representation of watershed phenomena and
improved modeling methodology.

However, models are only simplified representations of natural
systems. Actual watershed processes are more complex and vari-
able than what can be generally represented in even most sophis-
ticated models (Haan et al., 1995). Uncertainty due to model
parameterization, input data, model structure, and observations
used for model calibration can significantly impact the accuracy of
model outputs. For clarification in this study the uncertainty from
forcing inputs (input data) should not be regarded as a part of error
contributed from model parameterization. As pointed by Ajami
et al. (2007) that it is not appropriate to assume all prediction
uncertainty is contributed by model parameterization as it is
typical inwatershed calibration/validation. On the other hand, even
when uncertainty from parameterization, input data, and/or model
structure is included, the commonly used goodness-of-fit statistics
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which are calculated relative to observational data need to be
modified considering measurement uncertainty. Because of
imperfect observation, Harmel and Smith (2007) and Harmel et al.
(2010) have proposed to consider measurement uncertainty in the
evaluation of goodness-of-fit statistics in hydrologic and water
quality modeling. In fact, failing to consider one or more sources of
uncertainty may cause biased model calibration results and corre-
sponding model predictions.

In review of literature, parameterization uncertainty has
received the most attention in previous studies (e.g., Kuczera and
Parent, 1998; Osidele et al., 2006; Gallagher and Doherty, 2007;
Hassan et al., 2009; Loosvelt et al., 2011; Rasmussen and
Hamilton, 2012; Joseph and Guillaume, 2013). The parameter-
calibration approach indicates that parameter errors are the ulti-
mate attribution of all possible sources (Ajami et al., 2007). Pre-
dictive uncertainty contributed by model input data has been
explored and proven to have significant impact on model calibra-
tion (Kavetski et al., 2002; Ajami et al., 2007; Strauch et al., 2012).
Wang (2008) applied the Bayes inferences to stochastically conduct
data generation with non-concurrent, missing input data. In addi-
tion, other studies incorporate input uncertainty explicitly during
the calibration processes (Kavetski et al., 2002; Ajami et al., 2007). A
further source of uncertainty is model structure. The importance of
structural uncertainty was demonstrated by Refsgaard et al. (2006)
and Clark et al. (2008). One of the most frequently cited approaches
for exploring the structural uncertainty is to aggregate different
models through the Bayesian Model Averaging (BMA) technique,
where the significance of simulation performance for each imple-
mentedmodel can be stated by BMAweights (Kavetski et al., 2006a,
2006b; Ajami et al., 2007; Duan et al., 2007). The contribution of
uncertainty in calibration/validation data has only recently been
incorporated into evaluation of watershed models. For example,
Ullrich and Volk (2010) investigated the influence of uncertainty in
NO3eN monitoring data on model calibration and evaluation. Prior
to work by (Harmel et al., 2006, 2009), no comprehensive frame-
work for estimation of uncertainty in measured discharge and
water quality data was available. Following the development of this
framework, methods were further developed by Harmel and Smith
(2007) and Harmel et al. (2010) to modify goodness-of-fit in-
dicators to consider uncertainty in measured data used for model
calibration/validation evaluation. Uncertainty has also been
explored in associated with other techniques. A Bayesian-based
framework assisted by the Morris global sensitivity analysis
method was developed to evaluate performance of two models
(Minunno et al., 2013), and a set-membership approach was
implemented to identify parameter and prediction uncertainty
while conducting sediment yield simulations (Keesman et al.,
2013).

The main contribution of this study is the development of a
framework that facilitates simultaneous evaluation of parameteri-
zation, input data, model structure, and calibration/validation data
uncertainty and their contribution to predictive uncertainty, enti-
tled Integrated Parameter Estimation and Uncertainty Analysis Tool
(IPEAT). The specific objectives of this study were to: (i) quantify
predictive uncertainty while propagating different sources of un-
certainty and (ii) calibrate the Soil and Water Assessment Tool
(SWAT) model with the consideration of four sources of uncertainty
(as opposed to typical model calibration of considering only
parameter uncertainty) to understand the role and importance of
uncertainty source on model prediction (best solution) and pre-
dictive uncertainty. In this study, the model structural uncertainty
analysis was limited to the two modified SCS, now the Natural
Resource Conservation Service (NRCS), curve number method
(USDA Soil Conservation Service, 1972; USDAeNRCS, 2004) for
calculating surface runoff within the SWAT2009 model. A set of
other models can also be included in the analysis, which is not the
focus of this study.

2. Methods and materials

2.1. Framework of incorporating different sources of uncertainty

The proposed framework to incorporate uncertainty from parameterization,
input data, model structure, and observation data used for calibration is provided in
Fig. 1 where it is compared with typical watershed modeling.

2.1.1. Input data uncertainty
Input data such as rainfall, temperature, soils, and land use/cover are critical

drivers for watershed simulation. For simplicity in this study only the uncertainty
from rainfall was considered. The integrated Bayesian uncertainty estimator (IBUNE)
(Ajami et al., 2007) was used to account for uncertainty contributed by rainfall data
through an input error model as shown in Eq. (1), which assumed a random
Gaussian error as a multiplier for every input observation (Ajami et al., 2007).

Ra t ¼ kRt ; kwN
�
m; s2m

�
(1)

where Ra_t and Rt are the adjusted and observed rainfall depth at time step t (e.g., the
given day t), respectively, k is the normally distributed random noise with mean m,
m ˛ [0.9,1.1] and variance s2m , s

2
m˛½1e� 5;1e� 3� as defined by (Ajami et al., 2007).

For each SWAT simulation run, the two variables (m and s2m) from this input
error model were added as two unknown parameters to the system and a random
multiplier (k) to each time step was drawn from the normal distribution Nðm; s2mÞ. A
parameter estimation technique, dynamically dimensioned search (DDS) (Tolson
and Shoemaker, 2007) (see Section 2.1.3.) was used to search the SWAT model pa-
rameters and the input error model parameters (m and s2m) simultaneously. Through
SWAT simulation, the uncertainty associated with the input error model parameters
and the SWAT model parameters were propagated through the system.

2.1.2. Model structure uncertainty
Uncertainty is also contributed by the inability of the model structure to

perfectly mimic watershed processes. Different models have different degrees of
complexity and different algorithms tomimic natural processes. Evenwithin a given
modeling system, alternative methods may be offered. Uncertainty due to model
structure can significantly impact the accuracy of model outputs. Although re-
searchers have included a set of mutually exclusive models in analyzing model
structural uncertainty (e.g., Abrahart and See, 2002; Georgakakos et al., 2004; Ajami
et al., 2007), there are potentially many alternativeways to formulate the analysis by
combining different models considering there are many hydrologic and water
quality models out there. In this study, we only considered the widely used SWAT
model. SWAT offers two options to calculate the curve number retention parameter,
s. The first one is the traditional method which allows s to vary with soil profile
water content (SCSI). An alternative method (SCSII) allows s to vary with accumu-
lated plant evapotranspiration. These twomethods were considered in this study for
model structural uncertainty.

SWAT is a continuous-time and semi-distributed parameter model, which is
developed to simulate/predict hydrologic and water quality processes at the large
watershed scale (Arnold et al., 1993, 1998) and it is widely applied for assessing
water resource and nonpoint-source pollution problems (e.g., Du et al., 2005;
Jayakrishnan et al., 2005; Green et al., 2006; Moriasi et al., 2009; Arnold et al.,
2010; Chiang et al., 2010; Douglas-Mankin et al., 2010; Ghebremichael et al.,
2010; Kim et al., 2010; Meng et al., 2010; Srinivasan et al., 2010). Comprehensive
descriptions of SWAT are presented in Gassman et al. (2007) and Arnold et al.
(2012).

The Bayesian Model Averaging (BMA) was used in this study for account for
model structural uncertainty. BMA is a probabilistic scheme for model combination
(Raftery et al., 2005; Ajami et al., 2007; Wöhling and Vrugt, 2008). The posterior
distribution of the BMA prediction, yBMA, under the two SWAT model options of
M1 ¼ SCSI and M2 ¼ SCSII is given as:

p
�
yBMA

���M1;M2;
~X; ~y

�
¼

X2
k¼ 1

p
�
Mk

���~X; ~y�� pk
�
yk
���Mk;

~X; ~y
�

(2)

where ~X is the SWAT model input forcing data, ~y is SWAT output variables of in-
terests (here streamflow and water quality NO3eN), pðMkj:~X; ~yÞ is the posterior
probability of model Mk, pkðykj:Mk;

~X; ~yÞ is the forecast posterior distribution of yk
given prediction quantities from model Mk with input data ~X and corresponding
prediction ~y. Thepkðykj:Mk;

~X; ~yÞ is represented by the normal distribution with
mean equal to the output of model Mk and standard deviation sk. The term
pðMkj:~X; ~yÞ is also known as the likelihood of model Mk being the correct model, or
BMA weight, which should be summed to one.

X2
k¼1

p
�
Mk

���~X; ~y� ¼ 1 (3)



Fig. 1. Watershed modeling flowchart: (A) typical modeling study vs. (B) framework of incorporating major uncertainty in modeling.
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Theweights can be estimated by different optimization techniques. For example,
Expectation-Maximization (EM) algorithm and the Shuffled Complex Evolution
Metropolis algorithm (Raftery et al., 2005; Duan et al., 2007; Wöhling and Vrugt,
2008). In this study, the EM algorithm was used. Better simulation results produce
higher BMA weights.
Table 1
General performance ratings from Moriasi et al. (2007).

Performance rating NSE PBIAS (%)

Streamflow Nitrogen

Very Good 0.75 < NSE � 1.00 PBIAS < �10 PBIAS < �25
Good 0.65 < NSE � 0.75 �10 � PBIAS

< �15
�25 � PBIAS
< �40

Satisfactory 0.50 < NSE � 0.65 �15 � PBIAS
< �25

�40 � PBIAS
< �70

Unsatisfactory NSE � 0.50 PBIAS � �25 PBIAS � �70

NSE: Nash-Sutcliffe efficiency coefficient.
PBIAS: Percent bias.
2.1.3. Parameter estimation
Parameterization uncertainty results from various physically or empirically

based model parameters which are not known with certainty or are difficult to
attain. Therefore model calibration procedure typically deals with model parameter
uncertainty. In typical model calibration processes, only one set of calibrated pa-
rameters is accepted. Correspondingly, singular outputs are reported (Fig. 1A). The
singular parameter set values are either identified through automatic optimization
procedure or through manual calibrations where the modeler subjectively stops
further adjusting of parameter values duo to insignificant improvement in terms of
goodness-of-fit statistic measures.

In this study, a dynamically dimensioned search (DDS) algorithm (Tolson and
Shoemaker, 2007) was used for auto-calibration and all runs are used for uncer-
tainty analysis. The DDS is a simple stochastic neighborhood search algorithm
focused on finding preferred parameter combinations fast within the user specified
maximum number of model runs (here 10,000). It searches globally at the beginning
and then becomes more focused on local search as the number of iterations ap-
proaches the specified maximum number of model runs, which is achieved by
dynamically and probabilistically reducing the number of dimensions in the
neighborhood. New search avoids poor local optima and parameter values are
updated by perturbing the current solution values in the randomly selected di-
mensions with perturbation magnitudes randomly sampled from a normal distri-
bution with a mean of zero. More detail can be found in Tolson and Shoemaker
(2007).

Any goodness-of-fit statistics can be used as objective function in the DDS for
optimization. In this study, the likelihood function developed by Ahmadi (2012) was
used, which is an aggregated multisite and multi-objective (e.g., considering
streamflow and water quality) function. Because the formulation/derivation of the
function is long, we only cover the essence of the likelihood function as below. It
represents the log-likelihood of model residuals for a given set of model parameters.
Assuming that residuals are normally and independently distributed with mean
equal to zero and unknown but constant standard deviation s2e , the likelihood
function can be written in below as stated in van Griensven and Meixner (2007):

lðεjqÞ ¼
Ym
j¼1

Ynj

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2e;j

q exp

0B@�
�bPi;jðqÞ � Oi;j

�2
2s2e;j

1CA (4)

where l is the likelihood function representing the likelihood of model residuals ε for
a given set of model parameters q, m is the total number of objective functions
considering all hydrologic and water quality output variables of interest (e.g.,
streamflow, sediment, NO3eN) at all sampling sites, nj is the number (or length) of
observed data for output variable j, bP is the simulated response vector of the
watershed, O is the vector of observed (measured) output response.

Because in most cases the errors in hydrological and water quality modeling are
not normally distributed and independent, a first-order autoregressive (AR-1)
transformation of the residuals is used to account for correlated errors. The final
objective function is the logarithm of Eq. (4) under AR-1 transformation (Sorooshian
and Dracup, 1980). The log-likelihood of model residual ranges from 0 to positive
infinity, however, the true minimum value is not known. Because the DDS algorithm
is not designed to converge to the precise global optimum, the finial minimum
likelihood value cannot guarantee the final parameter set truly represent the
watershed system. In fact, even a precise global optimum, which in term of auto-
calibration is the minimized objective function, can be achieved through a global
optimization algorithm (rather than DDS), the corresponding parameters are not
always the guarantees of adequate realization. That is because model calibration is
only conditioned on what we feed (actual data and/or range of uncertainty) into the
model and what we assigned for calibration comparisons (observed data and
objective function). And any objective function (aggregated or not) has limitations
because different statistical measures place emphasis on different systematic and/or
dynamic behavioral errors. Therefore, although the log-likelihood functionwas used
in the auto-calibration process to determine the best parameter set in this study, the
Nash Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) and percent bias (PBIAS) are
reported and used to evaluate model performance according to the general per-
formance ratings proposed by Moriasi et al. (2007) as shown in Table 1.

2.1.4. Calibration/validation data uncertainty
Uncertainty is also contributed by using uncertain measured discharge and

constituent flux data to calibrate model and evaluate model performance. In this
study, the impact of measurement uncertainty was investigated based on research
by Harmel et al. (2006, 2009, 2010). Harmel et al. (2006) compiled information from
available literature on uncertainty in measured streamflow and water quality data.
The uncertainty is inherent in the four procedural categories: discharge measure-
ment, sample collection, sample preservation/storage, and laboratory analysis.
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Harmel et al. (2009) added another procedure category, data processing and man-
agement, to the 2006 framework. The root mean square error propagation method
of Topping (1972) was used with literature reported errors to estimate the cumu-
lative probable uncertainty for each procedural category and for the overall resulting
streamflow and water quality data. Scientific estimates of uncertainty for best and
worst case and a range of typical data quality scenarios are reported in Table 5 in
Harmel et al. (2006). Harmel et al. (2009) reported that the typical uncertainty for
measured streamflow is about �7e23% and NO3eN load is about �14e31%. The
range (probable error range, PER) of �10% and �30% was used for streamflow and
NO3eN, respectively, in this study.

Because of the inherent measurement uncertainty, modeling performance
should be evaluated against such uncertainty. Therefore, goodness-of-fit indicators
require modification to appropriately compare model predictions to observations
(Harmel and Smith, 2007). In this study, the probability distribution (PD) method
from Harmel and Smith (2007) was adopted to calculate NSE and PBIAS. The core of
the PD method is to assign a correction factor, CF, to each paired error. Taking NSE
calculation as an example, the error term (OiePi) in the Eq. (5) is modified/replaced
with the error term eui in Eq. (5).

NSE ¼ 1�
"Xn
i¼1

ðOi � PiÞ2=
Xn
i¼ 1

�
Oi � O

�2#
(5)

eui ¼ CFi
0:5

� ðUOi � PiÞ; ð1� absðPERiÞ=100Þ � Oi � UOi

� ð1þ absðPERiÞ=100Þ � Oi (6)

where Oi and Pi are measured and predicted values at each comparison point i,
respectively, eui is the modified error term at comparison time i, CFi is the correction
factor at time i, UOi is adjusted measurement at data point i considering the un-
certainty associatedwith the data point, and PERi is the probable error range for each
measured data point i, which is from the literature values as provided above.

The underlying assumption for this modification is that the probability distri-
bution for each observed value is symmetric with the observed value as mean and
median of the distribution. The CFi is divided by 0.5 because that is the maximum
probability of one half of the pdf. The CF value for the symmetric distribution can
range from 0 (when Oi ¼ Pi) to 0.5. In this study, the observed data point is assumed
normally distributed with the mean of Oi, and the variance s2 is calculated as below:

s2 ¼
�
Oi � UOiðlÞ

3:9

�2

(7)

where UOi(l) is the lower uncertainty boundary for each measured data point i.
Because the normal distribution is infinite in both directions, the use of lower un-
certainty boundary in the calculation is not strictly valid; however, it is appropriate
by using standard deviation of 3.9 which contains>99.99% of the normal probability
distribution (Haan, 2002). More detail can be found in Harmel and Smith (2007). In
implementation to determine the CF value for the normal distribution, the normal
distribution can be transformed to the standard normal distribution N(0,1). And CF is
calculated as the area under the standard normal distribution (Harmel and Smith,
2007).

2.1.5. Watershed behavior constraints
For complexwatershed simulationmodels such as SWAT, it is possible to achieve

acceptable goodness-of-fit statistic values for sequential responses (e.g., daily
streamflow, monthly mean nitrate concentration), but inaccurately predict sum-
mative outputs (e.g., denitrification and NO3eN yield) with typical optimization (or
auto-calibration) methods. To avoid this situation, watershed behavior constraints
are applied to ensure calibrated results are realistic. In other words, calibration that
does not accurately represent watershed behavior may produce parameter sets that
generate unrealistic outputs but “good” goodness-of-fit statistic values. The water-
shed behavior responses, such as accumulated mass of biodegradation, water and
nutrient runoff from agricultural fields, amount of nutrient leaching, etc. (Sui and
Frankenberger, 2008), may not reasonably simulated as a result of calibration
criteria focusing only on in-stream responses (wheremeasurements are available) of
the system and associated model tuning rather than the intra-watershed response
(Green et al., 2006; Amatya and Jha, 2011).

In this study, the importance of reasonably representing watershed behavior in
calibration was considered by implementing watershed behavior constraints on
denitrification and the ratio of NO3eN losses contributed from subsurface flow (SSQ)
verse the total loss from SSQ and surface flow (SQ) due to the case study watershed
(Section 2.2) having tile drained agriculture land. In the Midwest region of the
United States, the annual denitrification rate has been reported no more than 50 kg/
ha (David et al., 2009). Ale et al. (2012) found that denitrification ranged from 20 to
26 kg/ha. In this study, denitrification was restricted to 0e50 kg/ha based on David
et al. (2009). Although measured data of NO3 loadings from surface runoff, lateral
flow, tile drainage, and groundwater are not available for the ECW (Sui and
Frankenberger, 2008), studies conducted in cultivated watersheds in Indiana and
Iowa reported that tile-drain effluent is a major contributor to NO3 in streams (e.g.,
Nelson et al., 1979; Lucey and Goolsby,1993). Schilling (2002) reported that baseflow
and tile drainage accounted for 61e68% of annual NO3 loss for two watersheds in
central Iowa. In this study, the ratio of NO3eN losses contributed from SSQ vs. from
both SSQ and SQ to be larger than 0.6. If results violate these constraints, then the
corresponding model run is penalized by assigning an extreme value to the likeli-
hood objective function used in DDSminimization procedure. Therefore, new search
can avoid poor local optima.

2.1.6. Analysis of prediction uncertainty
In brief to summarize uncertain propagation (Fig. 1B), the input and parameter

uncertainty are propagated through SWAT simulation of hydrologic processes using
either the SCSI or SCSII surface runoff estimation and all other processes simulated
by SWAT. Model outputs are then compared with measurements with the consid-
eration of inherent measurement uncertainty using modified goodness-of-fit in-
dicators and likelihood objective function. The procedure is repeated through
parameter DDS optimization.

Then predictive uncertainty can be analyzed using all runs for probability dis-
tribution and 95% confidence interval. In this study SWAToutputs of streamflow and
NO3eN loss are quantified using inclusion rate and spread. The inclusion rate rep-
resents the percentage of observed data points within the 95% confidence interval,
and the spread is the averagewidth of the corresponding uncertainty band along the
prediction time series. The uncertainty band was derived based on the difference
between the 95% and 5% quantiles.

2.2. Case study watershed and calibration design

To illustrate this framework, a case study was developed for the 248 km2 Eagle
Creek Watershed (ECW). The ECW is located in central Indiana within the Upper
White River watershed (Fig. 2). The average annual precipitation is 965 mm, and the
average annual temperature is 11 �C (Newman,1997). As in much of the Midwestern
U.S., agriculture is the major land use (Fig. 2) with drainage tile. A majority of the
soils in the ECW are in hydrologic soil group B (51%) and C (48%) (Fig. 2). NRCS Soil
Survey Staff (2010) defines a hydrologic group as a group of soils having similar
runoff potential under similar storm and cover conditions. The B and C group of soils
have a moderate and slow infiltration rate, respectively. For the period from 1997 to
2003, measured discharge data are available for one station (number 35 in Fig. 2,
USGS Gauge #03353200), and measured water quality data (NO3eN) are available
for four stations (numbers 20, 22, 27, 32 in Fig. 2). More detailed description of the
ECW can be found in Yen (2012).

Themonthly streamflowand NO3eN loss available from 1997 to 2000were used
to calibrate SWAT2009 with the consideration of four sources of uncertainty (as
opposed to typical model calibration of considering only parameter uncertainty) to
examine the impact of different calibration conditions/setups on the best solution.
The validation periods were from 2001 to 2003 for the 5 gauge stations (Fig. 2). Four
preliminary calibration cases (Table 2) were included in this study in order to
demonstrate the dilemma that model parameter sets identified through parameter
optimization procedure that have reasonable comparison statistics (e.g., goodness-
of-fit indicators proposed by Moriasi et al. (2007)) for watershed-scale response
may not be realistic in terms of intra-watershed responses (see Section 3.2). That is
what led to our consideration of using watershed behavior constraints during
parameter optimization (Table 3). We have also examined the situation where the
watershed constraints may not be able to clearly define due to data unavailability;
therefore, no constraints may be setup during parameter optimization yet with the
consideration of four sources of uncertainty (Table 3). All the calibration cases were
implemented to calibrate monthly streamflow and NO3eN loss using the same
default SWAT model parameter setup and a maximum number of 10,000 runs were
specified for each calibration case for the DDS optimization procedure to find
optimal solutions by minimizing the aggregated multisite and multi-objective
(considering streamflow and NO3eN) objective function described in Section 2.1.3.
For each of SCSI vs. SCSII paired with and without watershed behavior constraints (4
calibration cases listed in Table 2), after the specified maximum number of model
runs was met under each calibration case, BMA weights were calculated for paired
calibration cases (V vs. VI without constraints and VII vs. VIII with constraints).

3. Results and discussion

3.1. Auto-calibration relative to computational requirements

Computational time for each calibration case, which involved
10,000 runs, ranged from 450 to 500 h (Intel� Core� 2 Duo CPU
E8400 @ 3.00 GHz, 32-bit operating system, Microsoft Windows
XP). For all of the calibration cases, objective function values
converged (such that changes in the objective function value for the
current best parameter set showed improvement <1%) within
5000 model runs (Fig. 3). And patterns of convergence were similar
where objective function value dropped significantly in the
beginning of DDS iterations and after algorithm convergence



Fig. 2. Case study area: Eagle Creek Watershed, Indiana. USGS gauge stations are represented by the numbered circles. Soil hydrologic group is defined by NRCS Soil Survey Staff
(2010) as a group of soils having similar runoff potential under similar storm and cover conditions.
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objective function values were stable with little changes (Fig. 3). It
is expected that auto-calibration with watershed behavior con-
straints would slow down the DDS convergence (cases VII and VIII)
because the optimization would avoid poor neighborhood which
violate constraints and the corresponding objective function was
assigned an extreme value (penalized); therefore DDS would
restart search for minimization. Based on Fig. 3, the calibration case
II performed the worst in maximizing objective function values,
and the SCSI without watershed behavior constraints (calibration
case V) produced the best values.
3.2. Best solutions and goodness-of-fit indicators

As described earlier in Section 2.1.3 that model calibration
(manual or automatic) is conditioned on what we feed (actual data
and/or range of uncertainty) into the model and what we assigned
for calibration comparisons (observed data and objective function),
therefore, different calibration conditions/cases would result in
different best solutions. Results of best objective function values
and the corresponding predicted output for denitrification and the
NO3eN loss ratio (loss from SSQ vs. total loss from SSQ and SQ) are
shown in Table 4.
Although the best solutions based on the objective function
values for the first four calibration cases (IeIV) are comparable with
calibration cases VeVIII as listed in Table 4, the annual denitrifi-
cation rates were ranged between 121.4 and 243.3 (cases I to IV)
which were not reasonable based on reported literature values as
reviewed in Section 2.1.5. Although the streamflow comparison
statistics at the USGS gauge 03353200 (#35 in Fig. 2) were satis-
factory for both the calibration and validation period for all the
calibration cases (Fig. 4), Fig. 5 illustrates the weakness of the four
calibration cases IeIV in simulating NO3eN loss. Although the
calibratedmodels have reasonable comparison statistics for NO3eN
loss during calibration period (Fig. 5) with NSE values ranging from
0.54 to 0.92 and PBIAS ranging from 16.1% to 26.6% (satisfactory
performance based on Moriasi et al. (2007)), most of the corre-
sponding NSE values for the validation period are unsatisfactory.
Among the total of 16 comparisons for NO3eN loss (4 stations � 4
calibrated cases ¼ 16) during the validation period, eleven com-
parison NSE values ranged from �0.09 to 0.41 and only five (see
data labels in Fig. 5) ranged from 0.51 to 0.69 (satisfactory).

However, for calibration cases V to VIII, BMA(V vs. VI) and
BMA(VII vs. VIII) (see Table 3), 23 out of 24 comparisons for NO3eN
loss had satisfactory performance rating during calibration period,
and the satisfactory ratio was 21 out of 24 for the validation period



Table 2
Preliminary calibration cases for Eagle Creek Watershed SWAT modeling study
without consideration of watershed behavior constraints during optimization.

Uncertainty sources SCSI SCSII

SWAT parameters I III
SWAT parameters, input data II e

SWAT parameters, calibration data IV e

Table 3
Calibration cases for Eagle Creek Watershed SWAT modeling study (uncertainty
from input data, SWAT parameters, model structure, and calibration data are
considered).

Behavior constraints Runoff method

SCSI SCSII

No V VI BMA (V vs. VI)
Yes VII VIII BMA (VII vs. VIII)

Behavior constraints: annual denitrification rate<50 kg/ha; and ratio of NO3eN loss
contributed from subsurface flow vs. from subsurface flow and surface flow>0.6.

Fig. 3. Overall performance of objective function values versus model evaluations for
calibration cases IeVIII.
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(see data labels for unsatisfactory NSE values in Fig. 6). In addition,
although watershed behavior constraints were not used during
optimization processes in the calibration cases V and VI where
uncertainty from input data, SWAT parameters, and calibration data
were considered, the optimum runs with the best objective
Table 4
Best objective function values and the corresponding denitrification amounts and
NO3eN loss ratios for the calibration period.

Calibration case Objective function
value

Denitrification
(kg/ha)

NO3eN loss ratio

I 342.1 (399.6) 121.4 (16.9) 0.98 (0.94)
II 348.6 (379.4) 214.2 (30.4) 0.97 (0.99)
III 343.1 (373.1) 243.3 (7.1) 0.96 (0.98)
IV 342.4 (399.6) 211.4 (49.7) 0.98 (0.98)
V 340.1 36.1 0.96
VI 345.2 14.5 0.63
VII 343.0 36.1 0.92
VIII 344.7 49.8 0.79

The values in the parentheses are the “best” objective function values and corre-
sponding denitrification and NO3eN loss ratios after removing runs which violate
watershed behavior constraints. Behavior constraints: annual denitrification rate
<50 kg/ha; and ratio of NO3eN loss contributed from subsurface flow vs. from
subsurface flow and surface flow>0.6.
function values had denitrification rates and NO3eN loss ratios
within the behavior ranges (Table 4).

These results illustrate that not accounting for the major sources
of uncertainty can lead to biased parameter estimates, which are
compensating for other sources of uncertainty not considered and
may not adequately represent the watershed system. For example,
although the objective function values were converged within
5000model runs (only half of the maximum number of model runs
specified, Fig. 3) for each of the calibration cases, the calibrated
model or parameter sets from calibration cases IeIV (considered 1
or 2 sources of uncertainty) did not realistically represent the
watershed behavior in term of annul denitrification rate (Table 4)
(although with reasonable comparison statistics for total NO3eN
loss during calibration period). As expected, these calibrated
parameter sets did not do a good job to produce satisfactory pre-
dictions of NO3eN loss for the validation period because they do
not adequately represent the watershed process. On the other
hand, the calibration cases VeVIII (considered 3 sources of uncer-
tainty) and BMA (V vs. VI) and BMA (VII vs. VIII) (considered 4
sources of uncertainty) all produced more realistic results than
cases IeIV did in terms denitrification rate and satisfactory model
performance for the validation period.

Because all runs during auto-calibration were saved, a post-
process procedure was conducted for calibration cases IeIV to
remove runs which violate watershed behavior constraints. As
expected, after this post-process the goodness-of-fit indicators
(NSE and PBIAS) for the remaining “best” runs were significantly
reduced (Fig. 5). If the constraints were applied during auto-
calibration for IeIV rather than this post-process, the quality of
calibration/validation results could be improved (see Yen, 2012).
However, the question we were trying to answer here is if no
constraints may be setup for parameter optimization due to data
unavailability, then will the calibration cases IeIV (considered only
one or two sources of uncertainty) lead to satisfactory or adequate
model realization? The answer is “no”, at least for this case study
watershed, based on results presented in Table 4 and Fig. 5. How-
ever, by comparing the calibration cases V vs. VII (same SCSI and
same 3 uncertainty sources as V but with constraints), or the cali-
bration cases VI vs. VIII (same SCSII and same 3 uncertainty sources
as VI but with constraints), less or not much differences were
observed between the without and with watershed behavior con-
straints cases in terms of model performances (see Fig. 6). The same
is true when BMA was used to consider model structural uncer-
tainty in the calibration case BMA (V vs. VI) with on constraints
used and case BMA (VII vs. VIII) with constraints applied in opti-
mization (Fig. 6).

3.3. BMA applications

As shown in Table 5, results at the 5 USGS stationsweremixed in
terms of BMA weights for SWAT SCSI (soil moisture-based CN
method) and SCSII (revised soil moisture index SMI CN method).
The SWAT SCSII method is based on the value of water depletion or
evapotranspiration (ET) results by Williams et al. (2012) indicate
that this method is generally robust and produces realistic runoff
estimates over a wide range of soil properties. In 7 out of 10 paired
weights, the SCSII BMA weights were relatively larger than those
for SCSI. For stations #32 and #27, the SCSII had larger BMAweights
with or without constraints embed in calibration. The BMA’s
application for the VII and VIII cases (constraints embed in cali-
bration) also illustrates that SCSII is slightly better than SCSI with all
weights for SCSII>weights for SCSI except at station #22where the
two weights were very close to each other.

However, BMAweights for SCSI were larger than for SCSII under
the no constraints cases V vs. VI at stations #35 and #20; yet at the



Fig. 4. Nash-Sutcliffe efficiency (NSE) and percent error (PBIAS) for calibration/validation periods at station #35 for streamflow. For (A) cases IeIV, “original”: original calibration
results; “filtered”: post-processed results after removing runs violated behavior constraints and for (B) cases V-BMA (VII, VIII), C: calibration and V: validation.
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same two stations under the constraints cases VII vs. VIII, the
weights for SCSI were smaller than that for SCSII. The inconsistence
can be the indication that the weights are somehow compensating
for the other uncertainty sources (e.g., land use/cover, management
practices, soils at spatial scale) and/or other model structural de-
ficiencies not considered in this study. By comparing the BMA
weight differences between the two groups (Table 5), the group
BMA (VII vs. VIII) with constraints embed in calibration had rela-
tively smaller weight differences than those of group BMA (V vs. VI)
for all the 5 stations.
3.4. Uncertainty analysis

As described in Section 2.1.6, the uncertainty analysis was
focused on the calibration cases which incorporate major uncer-
tainty in watershed modeling as illustrated in Fig. 1, namely, cases
VeVIII (parameterization, input data, and calibration/validation
date uncertainty) and the two corresponding cases with BMA
application.

For the input error model (Eq. (1)), during parameter optimi-
zation the random Gaussian error (multiplier) was identified with
means ranged from 1.00 to 1.05 (input as from 0.9 to 1.1) and
variance generally less than 0.0005 (input as from 10�5 to 10�3 as
recommended by Ajami et al. (2007)). The mean had a narrower
range with low variance during parameter optimization, which
means the measured precipitation data was not significantly aler-
ted before entering into the SWAT model or they are not too far
from the assumed “true” rainfall depths. However, the result of
mean > 1 might indicate that the precipitation input data likely
underestimated the actual precipitation in the watershed.

The optimization procedure identified that the average values of
correction factors (CF, Eq. (6)) for measured streamflow and NO3eN
data ranged from 0.90 to 0.93. This means that more than 90% of
simulated outputs were within the estimated uncertainty ranges
for streamflow (�10%) and NO3eN (�30%).

Table 6 summarizes the prediction uncertainty results due to
uncertainty propagation through the SWAT simulation system for
the simulation period. The percentage of observed data at the 5
USGS gauge stations which are within the estimated 95% uncer-
tainty bounds ranged from 21% to 69% and the spreads of uncer-
tainty bands ranged from 0.6 to 31.7 (Table 6). The average width
of uncertainty band (spread) in case VI is wider than for case V for
all of the water quality gauges (NO3eN prediction), which in-
dicates that the selection of the surface runoff prediction proce-
dure (model structure) has a large influence on predictive
uncertainty. Moreover, implementing watershed behavior con-
straints (cases VII vs. V and cases VIII vs. VI) decreased the pre-
dictive uncertainty for all water quality gauges. This is an
important result because ensuring predicted behavior realistically
not only improved the quality of calibrated solutions as discussed
in Section 3.2 but also reduced predictive uncertainty for the
water quality stations.

When model structure uncertainty was also included by the
application of BMA (BMA (V vs. VI) and BMA (VII vs. VIII)), the
prediction uncertainty (as indicated by spread, which is affected
primarily by the BMA weights) did not change substantially
(Table 6). Although accounting for the major sources of uncertainty
in watershed modeling generated more reliable results, these un-
certainty results were still suffering from common limitations in
hydrologic/water quality modeling. First, not all sources of uncer-
tainty were accounted for, e.g., soil, land cover, agricultural man-
agement which were not considered in this study. Second, only two
alternative methods for surface runoff simulation in SWAT (only
one component and one model) were considered for model
structural uncertainty. The model structural uncertainty was
clearly underestimated, for example, the uncertainty in the water
quality component and tile drainage simulation were missing.

The inclusion rates ranged from 31% to 83% (Fig. 7) and spread
from 0.89 to 18.6 during the validation period (Fig. 8). Although it
does has limitations, the framework is a flexible tool to enhance
watershed modeling by addressing different sources of uncertainty
simultaneously; it can be used to improve confidence in model
application even during validation period.
3.5. Comparison with generalized likelihood uncertainty estimation
(GLUE)

GLUE (Beven and Binley, 1992; Beven, 1993) is based on Monte
Carlo simulations and the likelihood of a given parameter set is a
function of the model performance expressed in terms of the
objective function chosen. In GLUE, model responses are compared
with observations and each parameter set is weighted via the
likelihood measures. GLUE focuses on the generation of a large
number of solutions that exceed some nominal threshold (arbi-
trary) which defines behavioral solutions; therefore, it claims for
equifinality that there are many different parameter sets that may
be behavioral/acceptable in reproducing the observed behavior of
the simulation system (Beven and Freer, 2001). In IPEAT, the effi-
ciency in both calibration and uncertainty analysis are enhanced by
implementing the auto-calibration technique, DDS, which can
rapidly converge to good calibration solutions and avoid poor local
optima. As the results of calibration improved, it only adjusts one or
a few limited parameters simultaneously to keep the current gain
in calibration results. Therefore, newer parameter sets are more
focused on providing better solutions without having to have each
set weighted. The presented framework explicitly incorporates the



Fig. 5. Nash-Sutcliffe efficiency (NSE) and percent error (PBIAS) for calibration/validation periods (cases IeIV) at the 4 stations (st.) for NO3eN loss. “Original”: original calibration
results; “filtered”: post-processed results after removing runs violated behavior constraints. Due to magnitude issue, NSE < �1 and PBIAS < �70% data points were not mapped.

Fig. 6. Nash-Sutcliffe efficiency (NSE) and percent error (PBIAS) for calibration/validation periods for calibration cases V-BMA (VIIeVIII) at the 4 USGS stations (st.) for NO3eN loss.
C: calibration and V: validation.
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measurement uncertainty during calibration process using hyper-
parameters, while GLUE simply uses subjective goodness-of-fit
statistics. In addition, the proposed framework adds penalty
terms to the objective function. These penalty terms are essentially
regularization using prior knowledge (from history records in
literature or it can also be experts’ decision) of intra-model simu-
lation results. The proposed framework is able to cover and
Table 5
Bayesian Model Averaging (BMA) weights for BMA (V vs. VI) and BMA (VII vs. VIII) for th

Calibration case u @ st. 35 (discharge) u @ st. 32 (water quality) u

BMA (V vs. VI) V (SCSI) 0.729 0.162
VI (SCSII) 0.271 0.838
Difference 0.457 �0.677 �

BMA (VII vs. VIII) VII (SCSI) 0.354 0.316
VIII (SCSII) 0.646 0.684
Difference �0.293 �0.368 �

u: BMA weight.
st.: USGS gauge station number on Fig. 2.
improve the capacity of GLUE in both parameter estimation and
uncertainty analysis.

4. Conclusions

The proposed framework incorporates parameterization, input
data, model structure, and calibration/validation data uncertainty
e best runs.

@ st. 27 (water quality) u @ st. 22 (water quality) u @ st. 20 (water quality)

0.165 0.134 0.999
0.835 0.866 0.001
0.671 �0.731 0.998
0.260 0.514 0.488
0.740 0.486 0.512
0.480 0.028 �0.024



Table 6
Inclusion rate of observed streamflow and NO3eN loss data within the 95% confidence interval and the corresponding spread for the simulation period (1997e2003).

Scenario st. 35 (discharge) st. 32 (water quality) st. 27 (water quality) st. 22 (water quality) st. 20 (water quality)

V IR (%) 44.05 53.70 51.58 55.82 62.44
Spread 1.01 2.28 2.37 2.15 1.91

VI IR (%) 27.38 58.20 51.33 49.21 55.82
Spread 1.06 26.03 31.73 25.94 20.97

VII IR (%) 28.57 56.09 55.82 69.05 51.33
Spread 0.77 1.97 2.05 1.39 1.47

VIII IR (%) 40.47 56.35 53.97 65.34 53.97
Spread 0.87 5.67 9.63 1.71 2.47

BMA (V, VI) IR (%) 21.43 29.10 35.98 31.74 42.33
Spread 0.62 27.12 29.55 24.35 2.63

BMA (V, VI) IR (%) 25.00 33.60 40.21 27.25 29.63
Spread 0.74 5.22 8.38 1.60 1.69

IR(%) e Inclusion rate is the % of observed data points within the 95% confidence interval.
Spread e average width of the corresponding uncertainty band along the predicted time series.

Fig. 7. Percentage of observations in 95% uncertainty bounds during the validation
period at the 5 stations (st.) for cases considered uncertainty in parameter, input data
and calibration/validation data.
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in watershed modelling. Analysis of calibration cases IeIV (incor-
porated one or two uncertainty sources) demonstrated the
dilemma that model parameter sets identified through parameter
optimization procedure without accounting for all major sources of
uncertainty produced reasonable comparison statistics for
watershed-scale response during calibration period; however, they
were not realistic in terms of intra-watershed responses and also
performed poor for validation period. The calibration cases V and VI
which considered uncertainty in parameters, input data, and cali-
bration data in auto-calibration procedure led to more realistic/
reliable model simulations such that the interior watershed
behavior/response can be represented realistically (not violate
watershed behavior constraints evenwithout constraints embed in
calibration) and improved model performance for the validation
period.
Fig. 8. Spread average width of uncertainty band along the prediction time seri
The cases VeVIII and BMA (V vs. VI) and BMA (VII vs. VIII)
involved comparison of model structure uncertainty and the effects
of applying watershed behavior constraint. Important results of the
comparisons include: 1) the inclusion of four uncertainty sources
improved model simulations for both the calibration period and
validation period; 2) the application of watershed behavior con-
straints improved the quality of calibration results (more solutions
that represent actual watershed behavior) and reduced predictive
uncertainty especially for water quality; and 3) watershed behavior
was more realistically represented when the three or four major
sources of uncertainty were considered without having to embed
watershed behavior constraints in auto-calibration procedure,
which is important especially inwatersheds which little knowledge
is available on actual watershed behavior.

Therefore, based on this study it is very beneficial to calibrate
model with the consideration of three or four sources of uncer-
tainty (as opposed to typical model calibration of considering only
parameter uncertainty). The calibration case VII (under the
consideration of three sources of uncertainty) and case BMA (VII vs.
VIII) (under the consideration of four sources) provided the best
results in terms of NSE and PBIAS values (Figs. 4B and 6, satisfactory
performance for both calibration and validation period for all sta-
tions) and improved model prediction uncertainty (Table 6 and
Fig. 8, better inclusion rate and smaller spread).

For complex large-scale watershed simulation models such as
SWAT, calibration can be improved by considering the uncertainty
contributed from all possible sources. The proposed framework,
IPEAT, is an innovative tool to investigate the significance of un-
certainty sources simultaneously. Although it has limitations, such
as accounting for only the precipitation uncertainty in the input
side and only two alternative methods for surface runoff simulation
es for the validation period at the 5 stations (st.) for cases listed in Table 3.
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in SWAT in the structural uncertainty side, the framework is a
flexible tool to enhance watershed modeling with improved con-
fidence even during validation period.
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