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An accurate and synoptic quantification of gross primary production (GPP) in crops is essential for studies of car-
bon budgets at regional and global scales. In this study, we tested amodel, relating crop GPP to a product of total
canopy chlorophyll (Chl) content and potential incident photosynthetically active radiation (PARpotential). The
approach is based on remotely sensed data; specifically, vegetation indices (VI) that are proxies for total Chl con-
tent and PARpotential, which is incident PAR under a condition of minimal atmospheric aerosol loading. Using VI
retrieved from surface reflectance Landsat data, we found that the model is capable of accurately estimating
GPP in maize, with coefficient of variation (CV) below 23%, and in soybean with CV below 30%. The algorithms
established and calibrated over three Mead, Nebraska AmeriFlux sites were able to estimate maize and soybean
GPP at tower flux sites in Minnesota, Iowa and Illinois with acceptable accuracy.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Currently approximately 24% of the Earth's land surface is cultivated
cropland (Cassman & Wood, 2005). Croplands are both a unique re-
source and the product of a vital human activity, not only because of
a need to feed the world's seven billion people, but also because crops
impact environmental processes such as global carbon cycling and cli-
mate change (Cassman & Wood, 2005; Malmstrom et al., 1997). Gross
primary productivity (GPP) is the rate at which vegetation captures
and stores carbon as biomass, and GPP can potentially be used for esti-
mating crop yield as well as calculating carbon budgets (Malmstrom
et al., 1997; Reeves et al., 2004). An accurate and synoptic quantification
of spatially distributed GPP is essential for monitoring both crop status
and carbon exchange.

Crop productivity is a result of the interception of solar radiation
by the vegetation canopy. Thus, it is possible to use remotely sensed
data from satellites, including reflected and emitted radiation from
Earth in various wavelengths of the electromagnetic spectrum, as a
powerful and expedient tool for assessing crop GPP at regional and
global scales. Since 1999, the National Aeronautics and Space Adminis-
tration (NASA) has provided GPP estimates for the entire globe based
on the Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km

products (e.g., Running, et al., 2000; Running et al., 2004). The current
MODIS GPP algorithm provides reasonable spatial patterns and logical
temporal variability across a diverse range of biomes and climate re-
gimes. However, continued efforts are needed to resolve significant
problems in certain biomes, especially in croplands, where an accurate
MODIS estimation of GPP is still elusive (e.g., Heinsch et al., 2006;
Turner et al., 2005, 2006). A recent evaluation of satellite-based MODIS
products revealed that the estimates of GPP and net primary production
(NPP)were particularly poor for maize and soybean test sites (Turner et
al., 2005). Even though the annual NPP for themaize and soybean fields
was among themost accurate available ancillary data of all biomes stud-
ied, the uncertainties of theMODIS-derived estimates for the agricultur-
al sites were the highest; the MODIS product strongly underestimated
NPP. There are several reasons for the poor performance of the MODIS
product for croplands (e.g., Heinsch et al., 2006; Sims et al., 2006;
Turner et al., 2005; Zhao et al., 2005). The reasons include: (a) the use
of a constant maximum light use efficiency (LUE) value within a given
biome, a consequence of which is a reduced ability to detect
differences in species-specific LUE among crops (e.g., C3 vs. C4); (b) the
assumption of a single land cover class for the entire 1 km pixel even
though there is a considerable discrepancy between the spatial resolu-
tion of the MODIS product (1 km) and typical smaller sizes of cropped
fields in North America; and (c) the use of a generalized radiation trans-
fer algorithm for the retrieval of fraction of absorbed photosynthetically
active radiation (fAPAR) based on leaf area index (LAI, Myneni et al.,
1997) without a site-specific approach to characterize the vegetation
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species. Different crops with the same LAI (e.g., soybean vs. maize:
Suyker et al., 2005) have very different GPP values.

Potential alternatives to MODIS are the Landsat Thematic Mapper
(TM) and Landsat Enhanced Thematic Mapper (ETM) sensors, with
their fine spatial resolution (30 m pixel). Landsat data may provide
useful information to facilitate the analysis of CO2 exchange in crop-
lands. Ecophysiological differences between and among different
crop species are well documented, so classification of crop types
using the Landsat data should be particularly useful. Due to differ-
ences in canopy architectures and leaf structures, LUE varies drasti-
cally between species (C3 vs. C4 crops: maize LUE is nearly double
that of soybean— e.g., Suyker et al., 2005), causing great uncertainties
in estimating CO2 fluxes in crops with the coarse spatial resolution
(1 km) of MODIS. The use of TM and ETM data allows one the oppor-
tunity to overcome these limitations. With the opening of the Land-
sat archives to free and web-based access, the use of the sensor data
with greatly improved spatial resolution may considerably reduce the
uncertainties of GPP estimation in crops.

The overall goal of our study is to develop, calibrate and validate a
model for accurate estimation of gross primary production in maize–
soybean croplands based on Landsat data.

2. Methodology

The estimation of crop productivity is based on a concept original-
ly developed by Monteith (1972, 1977), who suggested that GPP is
related to the product of the fraction of radiation absorbed by photo-
synthetically active elements of plants (fAPARgreen, Hall et al., 1992;
Viña and Gitelson, 2005), the incident photosynthetically active radi-
ation (PARin), and the efficiency of the absorbed radiation being con-
verted into biomass (LUE):

GPP∝fAPARgreen � PARin � LUE: ð1Þ

It is recognized that the two key physiological properties of photo-
synthesis in Eq. (1), fAPARgreen and LUE, relate closely to total canopy
chlorophyll (Chl) content (Baret et al., 2007; Houborg et al., 2011;
Peng et al., 2011). Total canopy Chl content, defined as a product of
total leaf area and leaf Chl content (Gitelson et al., 2003), seems to
be the most relevant community property of vegetation productivity
(Whittaker & Marks, 1975). Total Chl content strongly correlates with
light absorption (Lieth &Whittaker, 1975) and directly relates the en-
hanced electron transport activity, which governs LUE (Terry, 1980),
to plant stress. Close relationships between GPP and the product of
total Chl content and PARin have been documented in three contrast-
ing crop types: maize, soybean and wheat (Gitelson et al., 2003;
Gitelson et al., 2006; Wu et al., 2009). Consequently, a model was re-
cently suggested to remotely estimate crop GPP via total Chl content
and PARin (Gitelson et al., 2006):

GPP∝Chl� PARin: ð2Þ

Thus, to remotely estimate GPP in crops, one needs to retrieve an
accurate measure of Chl content from remotely sensed data. Vegeta-
tion indices (VI), which are mathematical combinations of reflectance
in two or more spectral bands, are widely used to quantitatively mea-
sure biophysical characteristics of vegetation (e.g., Jones & Vaughan,
2011). Many approaches for accurately estimating the total Chl content
using VI have been proposed. The Terrestrial Chlorophyll Index (MTCI)
has been specifically proposed for Medium Resolution Imaging Spec-
trometer (MERIS) data to estimate total Chl content (Dash & Curran,
2004). Green and red edge chlorophyll indices (CIgreen and CIred edge)
were introduced and applied successfully for estimating total Chl con-
tent in maize and soybean (Gitelson et al., 2005). The CIgreen, derived
from Hyperion and Landsat-TM images, was found to be closely related
to maize Chl content with a determination coefficient (R2) above 0.86

(Wu et al., 2010a, b). The Wide Dynamic Range Vegetation Index —

WDRVI (Gitelson, 2004), retrieved from the MODIS 250m product,
appeared to be a good proxy of green LAI (Gitelson et al., 2007), which
closely relates to total Chl content (Ciganda et al., 2008). Thus, these
chlorophyll-related VI can all be used as proxies of Chl content, and
the model for GPP estimation has the form (Gitelson et al., 2006):

GPP∝VI� PARin: ð3Þ

This model was capable of estimating crop GPP accurately using in
situ reflectance transformed to simulate the spectral bands of MODIS
and MERIS (Gitelson et al., 2006; Peng & Gitelson, 2011a; Peng &
Gitelson, 2011b; Peng et al., 2011). The VI-PARin-based model (Eq. 3),
with MTCI derived from MERIS images, was capable of estimating GPP
accurately across a variety of land cover and vegetation types (Almond
et al., 2010; Harris & Dash, 2010). Wu et al. (2010a, 2011) showed that
maize GPP could be estimated with high accuracy using the VI-PARin-
based model with MODIS data. The VI-PARin-based model was also ac-
curate in estimating maize GPP using Landsat-ETM data (Gitelson
et al., 2008). However, in all applications, discussed above, PARin
measured at ground level with tower-based systems was used.

The temporal behavior of PARin during the growing season includes
two types of variation: low- and high-frequency variations (Fig. 1). The
former is due to seasonally decreased PARin intensity; total hours of
sunlight in the northern hemisphere gradually decrease after the sum-
mer solstice, which occurs around June 21 for Nebraska (day of year,
DOY, 172). For example, themonthly-average incoming PARin intensity
in the Midwestern U.S. declined by 31% from July to September
(Sakamoto et al., 2011). This significant decline of PARin causes a de-
crease in crop productivity (Peng et al., 2011; Sakamoto et al., 2011).
There is also high frequency PARin variation, which corresponds to
short-period changes in atmospheric transmissivity due to clouds or
aerosols (Peng et al., 2011).

During the growing season, crop GPP is affected by variation in
total Chl content (Eq. 2), as well as low and high frequency variations
of PARin. Chl-related VI closely follow seasonal changes in Chl content
(Almond et al., 2010; Gitelson et al., 2005; Harris & Dash, 2010; Wu et
al., 2009). In the green-up stage, VI alone relate closely to GPP, while
in reproductive and senescence stages, as PARin declines, discrepan-
cies between VI and GPP increased (Peng et al., 2011; Sakamoto et
al., 2011). The product of VI and PARin relates more closely to GPP
than does the VI alone because together they account for both the
seasonal change in crop Chl and the modulation of GPP due to
changes in radiation conditions (Almond et al., 2010; Peng et al.,
2011; Sakamoto et al., 2011).
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Fig. 1. Temporal behavior of PARin and PARpotential during the growing season, 2004
in Mead, NE. PARpotential is the maximal value of PARin that may occur when atmo-
spheric gasses and aerosol concentrations are minimal. It represents the seasonal
changes of sunshine duration (i.e. day length) but does not account for high frequency
variations of incoming radiation related to daily weather conditions.
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To develop algorithms based solely on remotely sensed data, one
needs to find an accurate proxy for PARin that can be measured
remotely. Shortwave radiation (SW) obtained from coarse scale me-
teorological data sets from the NASA Data Assimilation Office was
used as a substitute for PARin as input to Eq. (3) (Sakamoto et al.,
2011). However, these estimates of PARin have significant uncer-
tainties; the coefficient of variation (CV) was 23.6% and mean nor-
malized bias (MNB) was 13.9% (Sakamoto et al., 2011).

In the current study, we attempted to use the maximal value of
PARin that may occur when the concentrations of atmospheric gasses
and aerosols are minimal. We term this variable “potential incident
photosynthetically active radiation” (PARpotential) - Fig. 1. PARpotential

represents the seasonal changes in hours of sunshine (i.e. day length).
It may be calculated using the 6S radiative transfer code (Kotchenova
& Vermote, 2007; Vermote et al., 1997b) for a “clean” (non-absorb-
ing) aerosol model with an optical thickness of 0.05 at 550 nm and
water vapor below 1 g/m2. The solar irradiance at the top of the atmo-
sphere (TOA), geographic coordinates and solar angle for a given
location should be used as input data (Vermote, personal communi-
cation). PARpotential, as calculated for several sun angles, would be
used to define a total daily value. Another way to find PARpotential is
using a look-up table (LUT)-based algorithm, providing PARin as a
function of solar zenith angle, column water vapor and optical thick-
ness for several different representative aerosol models (Lyapustin,
personal communication). LUTs were generated using the interpola-
tion and profile correction method (Lyapustin, 2003). For our pur-
pose, PARpotential will be obtained as a look-up table value for the
background aerosol and a typical column water vapor.

Thus, we suggest using PARpotential as a proxy of PARin for the
model:

GPP∝VI� PARpotential: ð4Þ

The specific objectives of this study are (1) to compare the accura-
cy of Landsat based GPP estimation models for maize and soybean,
using both PARpotential (Eq. 4) and PARin (Eq. 3), (2) to assess the ac-
curacy and uncertainties of several Landsat-retrieved VI in estimating
crop GPP, and (3) to explore the possibility of using a unified algo-
rithm for GPP estimation in study sites that are different in geograph-
ic locations, crop management systems, and climatic conditions.

3. Data and methods

3.1. Study sites

Data from seven study sites were used in our investigation (Fig. 2),
three of which are located at the University of Nebraska—Lincoln Agri-
cultural Research and Development Center near Mead, Nebraska, USA
(http://public.ornl.gov/ameriflux/Site_Info/siteInfo.cfm?KEYID=us.
mead). Those three sites are all approximately 60-ha fields within
1.6 km of each other. Site 1 is planted in continuous maize equipped
with a center pivot irrigation system. Sites 2 and 3 are both planted
in maize–soybean rotation, but the former is irrigated in the same
way as site 1, while site 3 relies entirely on rainfall for moisture. In the
Nebraska (NE) sites, the planting density for maize is around 75,000
plants per hectare and around 300,000 plants per hectare for soybean.

Site 4, near Rosemount, Minnesota (MN), is 18.4 ha in size (http://
public.ornl.gov/ameriflux/Site_Info/siteInfo.cfm?KEYID=us.rosemount.
01). Sites 5 and 6 are 60-ha fields, in close proximity, near Ames,
Iowa (IA) (http://public.ornl.gov/ameriflux/Site_Info/siteInfo.cfm?
KEYID). Site 7 is located at Bondville, Illinois (IL) (http://public.ornl.
gov/ameriflux/Site_Info/siteInfo.cfm?KEYID=us.bondville.01). The four
study sites in MN, IA and IL are all planted in rainfed maize–soybean
rotation, and the planting density was 86,000 plants per ha for maize
and 340,600 plants per ha for soybean. More details about the crop
management and field history of these study sites are available in

Baker and Griffis (2005), Hatfield et al. (1999), Hollinger et al. (2005)
and Verma et al. (2005).

Each study site is equipped with an eddy covariance tower and me-
teorological sensors to obtain continuous measurements of CO2 fluxes,
water vapor and energy fluxes every hour (for example, see Verma
et al., 2005). Daytime net ecosystem exchange (NEE) values were com-
puted by integrating the hourly CO2 fluxes collected during a day when
PARin exceeded 1 μmol/m2/s. Daytime estimates of ecosystem respira-
tion (Re) were obtained from the night CO2 exchange–temperature
relationship (e.g., Xu & Baldocchi, 2003). The GPP was then obtained
by subtracting Re. The GPP data used in this study were from NE sites
during 2001–2008, from IL sites during 2001–2003, and from MN and
IA sites during 2005–2007.

3.2. Landsat data and Landsat-retrieved VI

Both Landsat-5 TM and Landsat-7 ETM+ images were used in order
to maximize cloud-free imaging opportunities. The details about
the images used in this study are given in Table 1. The Landsat data
used as input in this study were standard L1t files (georegistered,
orthorectified) from the US Geological Survey. The geodetic accuracy
of the L1t product is typically within 30 m (Lee et al., 2004). The
image digital numbers were converted to top-of-atmosphere (TOA)
reflectances, and then atmospherically corrected to surface reflectance
using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) at NASA GSFC (Masek et al., 2006). The atmospheric correc-
tion procedure corrects for gaseous absorption, Rayleigh scattering,
and Mie (aerosol) scattering using the MODIS/6S radiative transfer
model (Vermote et al., 1997a). Ozone concentrations are derived from
Total Ozone Mapping Spectrometer (TOMS) data aboard the Nimbus-7,
Meteor-3, and Earth Probe platforms. Column water vapor was taken
from NOAA National Centers for Environmental Prediction (NCEP) re-
analysis data available at a resolution of 2.5°×2.5°.

Aerosol optical thickness was derived for each image using the
dark, dense vegetation approach of Kaufman et al. (1997). Based on
the physical correlation between chlorophyll absorption and absorp-
tion by liquid water in vegetation, this method postulates a linear
relation between shortwave-infrared (2.2 μm) surface reflectance
(nearly unaffected by the atmosphere) and surface reflectance in the
visible bands. By using the relationship to calculate surface reflectance
for the visible bands, and comparing the result to the TOA reflectance,
aerosol optical depth may be estimated.

LEDAPS surface reflectance products have been compared to in
situ data from the Aerosol Robotic Network (AERONET) and to daily
500 meter resolution surface reflectance products from the MODIS

Site #4

Rosemount, MN
Site #1, #2, #3

Mead, NE

Site #5, #6

Ames, IA

Site #7

Bondville, IL

Fig. 2. The general location of the seven study sites inMinnesota,Nebraska, Iowa and Illinois.
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sensor aboard the NASA Terra spacecraft (Feng et al., 2011; Masek et
al., 2006). The uncertainties associated with the calculated reflectance
values appear to be within the uncertainty of the MODIS surface re-
flectance product (the greater of 0.5% absolute reflectance or 5% of the
recorded reflectance value) for normal aerosol loadings (τ550nmb0.5).

For each study site, we defined a rectangle in the center of a
Landsat image fitted in the field. The rectangle included 552 pixels
(690 m×720m) for site 1 NE, 506 pixels (690 m×660m) for site 2 NE,
576 pixels (720 m×720m) for site 3 NE, 276 pixels (360m×690m)
for site 4 IA, 325 (390 m×750m) pixels for site 5 IA, 132 pixels
(330 m×360m) for site 6 IL, and 272 pixels (480 m×510m) for site 7
MN. We applied the same rectangle to all images to extract the pixels
of interest, and the reflectance values for study sites were calculated
by averaging all the per-pixel values within the rectangle. A total of
290 Landsat-retrieved site spectral reflectances were pairedwith corre-
sponding daytime GPP observations during our study period (Fig. 3).
Fig. 3a and b showed the dynamics of green LAI in maize and soybean
during the growing season. In general, maize has a longer growth peri-
od than soybean, and the maximum green LAI of maize is about 25%
higher than for soybean. For maize data, we compiled a total of 120
images for NE sites, 12 for MN sites, 38 for IA sites and 20 for IL sites.
Compared to maize data, the number of images for soybean fields was
limited. In total, we had 55 images for NE sites, 4 for MN sites, 28 for
IA sites, and 15 for IL sites. The data from three NE study sites, which
were representative of all phenological stages found in maize and
soybean (Fig. 3c and d), were used for model development and cali-
bration, while the limited number of images taken over the MN, IA
and IL sites, were employed for model validation (Fig. 3e and f).

Table 1
Details regarding Landsat data acquisitions over seven study sites used in this analysis.

Site
#

Site location
(Ameriflux ID)

Coordinate Elevation
(m)

Image
information

Study
period

Total
number of
images

1 Mead, NE 41°09′
54.2″N

361 W2P028R031 01–08 60

(US-Ne1) 96°28′
35.9″W

2 Mead, NE 41°09′
53.5″N

362 W2P028R031 01–08 59

(US-Ne2) 96°28′
12.3″W

3 Mead, NE 41°10′
46.8″N

363 W2P028R031 01–08 56

(US-Ne3) 96°26′
22.7″W

4 Ames, IA 41°58′
29.6″N

275 W2P026R031 05–07 32

(US-Br1) 93°41′
25.4″W

W2P027R031

5 Ames, IA 41°58′
28.9″N

314 W2P026R031 05–07 34

(US-Br3) 93°41′
37.0″W

W2P027R031

6 Bondville, IL 40°0′22.3″
N

219 W2P022R032 01–03 35

(US-Bo1) 88°17′
25.4″W

W2P023R032

7 Rosemount,
MN

44°42′
51.5″N

260 W2P027R029 05–07 16

(US-Ro1) 93°05′
23.4″W
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Fig. 3. Phenology of green LAI in (a) maize and (b) soybean, and dates of Landsat data acquisition over (c) maize sites in Nebraska, (d) soybean sites in Nebraska, (e) maize sites in
Minnesota, Iowa and Illinois and (f) soybean sites in Minnesota, Iowa and Illinois.
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Four of the Landsat spectral bands with 30 m spatial resolution
were used in this study: blue (band 1: 450–520 nm), green (band 2:
520–600 nm), red (band 3: 630–690 nm), and near-infrared (band
4: 750–900 nm). Six chlorophyll-related vegetation indices were test-
ed for GPP estimation (Table 2). These VI were calculated from Land-
sat surface reflectance data, as well as Landsat TOA reflectance data.

3.3. PARin observations and PARpotential calculation

For each study site, hourly PARin wasmeasuredwith point quantum
sensors (LI-190, LI-COR Inc., Lincoln, NE) pointing toward the sky and
placed 6 m above the surface. Daytime PARin values were computed
by integrating the hourly measurements during a day when PARin

exceeded 1 μmol/m2/s. Daily PARin and PARpotential values are presented
in MJ/m2/d (Turner et al., 2003).

As we mentioned above (Methodology section), PARpotential can be
calculated using various radiative transfer approaches. However, in
this paper we calculated PARpotential using measured PARin values.
Since the daylight duration is mainly determined by the day of a year
(DOY) and geographic location, we created profiles of PARpotential as
functions of DOY for sites located in Nebraska, Minnesota, Iowa and Illi-
nois, based on daytime PARin obtained during study periods. For each
DOY, amaximal PARin valuewas found in the 8-day-PARinwindow cen-
tered on that particular DOY. This procedure was applied to the entire
growing season of a year using the 8-day moving window. The best-
fit functions of the relationships between maximal PARin and DOY
were found for each year and the variation among the years was very
small (coefficient of variation below 3.5%). Thus, the PARpotential vs.
DOY function was defined as the average within the relationship be-
tween maximal PARin and DOY for each year. The Landsat images
used in our work were mostly acquired when the study sites were
under cloud-free conditions. Measured PARin and calculated PARpotential

approximations were quite close for the NE sites on the Landsat acqui-
sition dates during the 8-year period from2001 to 2008,with the differ-
ence between PARin and PARpotential at 12% on average and 40% at most
(Fig. 4). For 88% of all Landsat images, the difference was below 20%.
These differences were due to varying atmospheric conditions, includ-
ing aerosol optical thickness and absorption by water vapor.

3.4. Canopy reflectance collected at close range

To assess the quality of atmospheric correction, we used reflectance
data collected at close range at the three NE sites. Spectral reflectance
measurements at canopy level were made using hyperspectral radiom-
eters mounted on “Goliath”, an all-terrain sensor platform (Rundquist
et al., 2004). A dual-fiber optic system, with two inter-calibrated Ocean
Optics USB2000 radiometers, was used to collect radiometric data in
the range of 400–1100 nm with a spectral resolution of about 1.5 nm.
One radiometer equipped with a 25° field-of-view optical fiber was

pointed downward to measure the upwelling radiance of the crop,
and the height of this radiometer was kept constant above the top of
the canopy (6 m) throughout the growing season yielding a sample
area with a diameter of 2.4 m. The other radiometer was pointed up-
ward to measure the incident irradiance simultaneously. Radiometric
data were collected close to solar noon (between 11:00 and 13:00
local time) when changes in solar zenith angle were minimal. This is
1–2 h later than the Landsat overpass, however, relative BRDF changes
due to this difference are small for both crops (Gitelson and Vina,
unpublished). Percent reflectance was then computed based on mea-
sured radiance and irradiance (details are given in Gitelson et al., 2006
and Viña et al., 2011). For each site, six randomly selected plots were
established with six randomly selected sampling points. Thus, a total
of 36 spectra were measured per site at each data acquisition date,
and their median value was used as the site reflectance.

Spectral reflectance measurements at close range were carried out
from May to October during the growing seasons from 2001 through
2008, which resulted in a total of 314 reflectance spectra for maize (47
in 2001, 30 in 2002, 92 in 2003, 30 in 2004, 53 in 2005, 13 in 2006, 40
in 2007 and 9 in 2008) and 145 spectra for soybean (54 in 2002, 49 in
2004, 26 in 2006 and 16 in 2008). Since spectral reflectance changed
gradually across the growing season, daily canopy reflectance,measured
at close range, was interpolated based on measurements taken at
cloud-free sampling dates. Such interpolated reflectances, obtained
at close range, were simulated in the spectral bands of Landsat for
comparison to the Landsat-retrieved surface reflectance on the dates
of image acquisition.

4. Results and discussion

4.1. Quality of atmospheric correction

To assess the quality of Landsat atmospheric correction, reflec-
tances retrieved from spectra collected 6 m above the top of the can-
opy were compared with Landsat-retrieved surface reflectance. In
blue, green, red and NIR bands, Landsat-retrieved surface reflectance
was quite close to reflectance taken at close range for all three sites in
Mead, NE from 2001 through 2008, with a maximal CV of 27.7% and
maximal mean normalized bias (MNB) of 18.3% for the blue band
(Fig. 5a) and minimal CV of 16.8% and minimal MNB of 11.7% for
the NIR band (Fig. 5d). It is worth noting that in all spectral bands,
MNB was positive indicating that close range measured reflectance
was consistently lower than Landsat surface reflectance. The points

Table 2
Vegetation indices retrieved from Landsat data, and used in this study.

Vegetation index Formula Reference

Simple ratio (SR) ρNIR /ρred Jordan (1969)
Normalized difference
vegetation index (NDVI)

(ρNIR−ρred) /(ρNIR+ρred) Rouse et al.
(1974)

Enhanced vegetation
index 2 (EVI2)

2.5×(ρNIR−ρred)/(1+ρNIR
+2.4×ρred)

Jiang et al.
(2008)

Green wide dynamic
range vegetation index
(Green WDRVI)

(α×ρNIR−ρgreen) /(α×ρNIR
+ρgreen)+(1−α) /(1+α),
α=0.3

This papera

Green chlorophyll
index (CIgreen)

ρNIR /ρgreen−1 Gitelson et al.
(2003, 2005)

a The weight coefficient α (0bαb1) is to attenuate the contribution of ρNIR at
moderate-to-high green biomass, and to make it comparable to that of ρred. Based on
the dynamic range of the Landsat reflectance used in this analysis, we used α=0.3.
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out of the range of the 95% confidential interval (3 of 140 points) were
excluded from the database for themodel development and calibration.

4.2. GPP model with PARpotential vs. model with PARin

To assess the accuracy of the models that use PARin (Eq. 3) and
PARpotential (Eq. 4), standard errors of GPP estimation by both models,
SE{PARin} and SE{PARpotential}, and their difference, ΔSE, were calcu-
lated as:

ΔSE ¼ SE PARinf g–SE PARpotential

n o� �
=SE PARinf g � 100% :

The value of the difference is positive if the accuracy of the
model (Eq. 4) that uses PARpotential is higher than that of the
model (Eq. 3) that uses PARin, while the difference is negative if
the accuracy of the model (Eq. 4) is lower. For all six VI, as retrieved
from Landsat data for both maize and soybean, the accuracy of the
model with PARpotential (Eq. 4) was consistently higher than that with
PARin (Eq. 3) — Fig. 6. The model with PARpotential was more accurate
by at least 5% for SR to more than 20% for green NDVI (Fig. 6).

One possible reason for such accurate GPP estimation when using
PARpotential instead of PARin is the well-documented (for maize) satura-
tion of GPP vs. PARin relationship, indicating that a decrease in PARin
may not correspond to a decrease in GPP (e.g., Ort, 2001; Suyker et
al., 2005). Secondly, under water-limited conditions, photoprotection
mechanisms were likely invoked to prevent damage to photosynthetic
processes (e.g., Bjo¨rkman & Powles, 1984; Kasahara et al., 2002). So
with the same total Chl content, the small decrease of PARin (as on the
Landsat acquisition dates) might not be accompanied with a GPP de-
crease in the samedegree. In that case,multiplying by PARin,whichfluc-
tuated in accordance with small variations in daily weather conditions,
maymake the values of VI×PARin “noisier” than VI×PARpotential for GPP
estimation, as is illustrated in Fig. 7 for green NDVI.

4.3. Calibration of algorithms

Concurrent GPP and Landsat observations during 2001–2008 over
the three NE sites represented a wide dynamic range of GPP variation
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(maize GPP ranging from 0 to 31 g C/m2/d; soybean GPP ranging from
0 to 18 g C/m2/d). The relationships VI×PARpotential vs. GPPwere estab-
lished for maize and soybean (Fig. 8). The relationship NDVI×PAR-
potential vs. GPP was nonlinear with slope decreasing as GPP increased
(Fig. 8a). The NDVI was a good indicator of low-to-moderate GPP, but
it was less accurate in detecting GPP when it exceeded 20 g C/m2/d.
At moderate-to-high vegetation densities, (1) red reflectance became
almost invariant and, thus, not sensitive to change in Chl content, and
(2) NIR reflectance was much higher than the red reflectance, which
results in low sensitivity of NDVI to total Chl content above 1 g/m2

(Gitelson, 2004; Gitelson et al., 2005) as well as to green LAI above
2 m2/m2 (Viña et al., 2011). Since crop productivity closely relates to
total Chl content and green LAI, NDVI lost its sensitivity to moderate-
to-high GPP values. Note that the relationship NDVI×PARpotential vs.
GPP for soybean was much closer to a linear relationship due to a
lower maximal Chl content and GPP values in soybean as compared to
that for maize.

The relationship green NDVI×PARpotential vs. GPP was more linear
thanNDVI×PARpotential vs. GPP, but still exhibited a decrease in sensitiv-
ity tomaize GPP exceeding 23–25 g C/m2/d. GreenWDRVI×PARpotential

and EVI2×PARpotential were linearly related to GPP, thus, they remained
sensitive to the wide range of GPP variation. SR and CIgreen were expo-
nentially related to GPP with slopes increasing as GPP increased.
These ratio indiceswere very sensitive tomoderate-to-high GPP values,
but much less sensitive to low GPP.

While best-fit functions for VI×PARpotential vs. GPP for VI were
nonlinear, except EVI2 and green WDRVI, they may be approximated
quite accurately by linear functions. For example, the determination
coefficient (R2) of the nonlinear relationship for NDVI×PARpotential

in maize was 0.964, while R2 was 0.934 for the linear relationship.

The R2 was 0.916 for CIgreen×PARpotential in maize with an exponential
relationship and 0.905 if using a linear relationship. To compare per-
formances of VI in estimating GPP, the linear relationships for all six
VI×PARpotential were established. Tables 3a and 3b present the linear
relationships GPP vs. VI×PARpotential, as well as indicators of uncer-
tainties associated with maize and soybean GPP estimation (R2, SE
and CV) in NE sites from 2001 through 2008. Overall, all six VI were
quite accurate for GPP estimation with CVs below 23% in maize and
below 30% in soybean. SR was less accurate than other indices for GPP
estimation for both maize and soybean, since at moderate-to-high
GPP the red reflectance as the denominator of SR is very low (below
3%) and noisy, thus resulting in a pronounced scattering of points
away from its best-fit function.

The normalized difference VI (NDVI, green NDVI and green
WDRVI) performed better than ratio-based VI (SR, and CIgreen), espe-
cially for soybean data as noted in Table 3b (CV was above 25% for
ratio indices while below 19% for normalized difference VI). To find
the reason for the discrepancy, the relationship between GPP/PAR-
potential and CIgreen for soybean was analyzed. The relationship showed
pronounced hysteresis (Fig. 9b): for the same CIgreen, GPP/PARpotential

in the green-up stage (DOYb220) was much higher than in the senes-
cence stage (DOY>220). We considered two cases taken during green
up (sample A) and senescence (sample B) stages (Fig. 9a). Green LAI
was 1.5 for sample A while 0.5 for sample B; fraction of absorbed radia-
tion (i.e. fAPARgreen) in sample Awas three times higher than in sample
B. In contrast, the total LAI in the senescence stage (sample B) was
higher than in sample A: 2.3 vs. 1.5 due to a higher total amount of
both photosynthetic and non-photosynthetic leaves in sample B,
which caused higher light scattering and higher ρNIR (Fig. 9c). Such
hysteresis of ρNIR resulted in the hysteresis of ratio VI for which NIR re-
flectance acted as a numerator (example for CIgreen in Fig. 9b). For soy-
bean, accuracy of GPP estimation by EVI2 decreased significantly
comparably to maize (Table 3); it is due to NIR reflectance plays the
main role in EVI2 formulation. For NDVI, green NDVI, and green
WDRVI, the effect of NIR reflectance hysteresis was attenuated by nor-
malization; thus they performed much better for soybean GPP estima-
tion than ratio VI with CVs below 17.4%. This effect was less
pronounced in maize due to a significant decrease in leaf inclination,
and thus a decrease in NIR reflectance during senescence.

All six VI used in the current study were species specific for maize
and soybean. For the same GPP, the value of VI×PARpotential in soy-
bean was consistently higher than that in maize with VI calculated
from reflectance in NIR and either green or red bands. This result is
due to contrasting leaf structures and canopy architectures of maize
and soybean (Gitelson, 2011; Peng & Gitelson, 2011b). Thus, prior in-
formation about crop types is required when using Landsat data for
GPP estimation. However, in the case of green NDVI, the relationships
for maize and soybean were close, allowing accurate GPP estimation
in both crops using the same algorithm with no re-parameterization
(Fig. 10).

4.4. Validation of algorithms

The images and GPP values were obtained during an eight-year
period over three irrigated and rainfed fields in Nebraska with different
field histories, crop management and weather conditions. However,
the algorithms established based on data from different fields during
8 years of observation were accurate in estimating GPP (Tables 3a
and 3b, Fig. 8). In order to explore the possibility of using a unified algo-
rithm for GPP estimation across the US, one needs to examine whether
the algorithm, established in NE, works for study sites located in differ-
ent geographic regions with no re-parameterization of their coeffi-
cients, and assess the associated uncertainties of GPP estimation.
Fig. 11 presents the relationships between GPP measured in the MN,
IA and IL sites and the product VI×PARpotential for VI that were found
to be the best in the NE sites (Tables 3a and 3b, green WDRVI for
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maize, and green NDVI for soybean). These VI were calculated using
surface reflectances retrieved from Landsat images taken over the MN,
IA and IL sites. Best-fit linear functions, established in the NE sites
(Tables 3a and 3b), with two standard errors of GPP estimation, are
also included. Despite the differences in climatic conditions and geo-
graphic locations among study sites from four states, more than 84%
of the maize samples and 62% of the soybean samples fell within
the 95% confidential interval of the algorithms calibrated at the NE
sites. This result shows potential for estimating GPP across the nation
or even across the globe using satellite data and a unified algorithm
based on the model (Eq. 4).

However, there was consistent overestimation of GPP in MN, IA
and IL when using the algorithm established in NE (MNB was 30.1%

for maize and 52.1% for soybean). One possible explanation for the
error was the different planting densities in the MN, IL and IA sites:
it was approximately 15% higher than in the NE sites (for maize:
86,000 pl/ha in MN, IL and IA vs. 75,000 pl/ha in NE; for soybean:
340,000 pl/ha in MN, IL and IA and around 300,000 pl/ha in NE).
Plant density affects vertical light profile and, thus, the light climate
inside the canopy, as well as fAPARgreen values. For the same total
Chl content and amount of incoming radiation, more light may be
absorbed and used for photosynthesis by the sparsely distributed
plants due to more open areas available and less shadows of nearby
plants (Peng & Gitelson, 2011a). Thus, at the same value of VI×PAR-
potential, the site with lower planting density, as in NE, produces more
GPP than sites with higher planting densities, e.g., MN, IA and IL. In
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Fig. 8. Relationship of GPP vs. (a) NDVI×PARpotential, (b) green NDVI×PARpotential, (c) green WDRVI×PARpotential, (d) EVI2×PARpotential, (e) SR×PARpotential, and (f) CIgreen×PAR-
potential for maize and soybean established in the Nebraska sites from 2001 through 2008.

Table 3a
The algorithms for daytime GPP estimating in irrigated and rainfed maize sites at Mead,
Nebraska during 2001–2008 (120 samples), with determination coefficients (R2), stan-
dard errors (SE) and coefficients of variation (CV) presented. GPP ranged from 0 to
30 g C/m2/d.

VI GPP=ax+b (x=VI×PARpotential) R2 SE, g C/m2/d CV, %

Green WDRVI GPP=2.63x−8.59 0.95 1.90 12.1
EVI2 GPP=3.54x−4.62 0.95 1.92 12.3
Green NDVI GPP=4.00x−15.4 0.94 2.20 14.0
NDVI GPP=3.11x−9.22 0.93 2.22 14.2
CIgreen GPP=3.57x+9.29 0.91 2.67 17.0
SR GPP=0.114x+3.02 0.84 3.49 22.2

Table 3b
The algorithms for daytime GPP estimating in irrigated and rainfed soybean sites at
Mead, Nebraska in 2002, 2004, 2006 and 2008 (54 samples), with determination coef-
ficients (R2), standard errors (SE) and coefficients of variation (CV) presented. GPP ran-
ged from 0 to 19 g C/m2/d.

VI GPP=ax+b (x=VI×PARpotential) R2 SE, g C/m2/d CV, %

Green NDVI GPP=2.86x−11.9 0.92 1.40 14.9
Green WDRVI GPP=1.66x−4.98 0.90 1.54 16.3
NDVI GPP=2.07 x−6.19 0.89 1.65 17.4
EVI2 GPP=2.15x−3.06 0.87 1.79 18.9
CIgreen GPP=0.106x+2.63 0.76 2.42 25.6
SR GPP=0.0515x+3.91 0.67 2.79 29.5
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addition, the solar radiation availability for the growing season dif-
fered among sites in NE, MN, IA and IL. For the same crop total Chl
content in different geographic locations, PARpotential varies as site lat-
itude changes; however, it is not clear how locational difference
affects GPP andwhether algorithms calibrated in one geographic region
could be used for very different latitudes with no re-parameterization.
Further studies are required to identify sources of uncertainties when
the unified algorithms are applied to different geographic locations
and crop management systems.

The model (Eq. 4), which relies on the product of crop total Chl
and PAR potential, can be accurately applied to estimate GPP in maize
and soybean based entirely on Landsat data. However, the procedures

of calibration and validation of the model are far from perfect and
contain several uncertainties. One of them is due to the incongruity
of time scales between Landsat observations and GPP data used in
the model. The Landsat image was obtained around 10 am for each
orbital passage, while GPP was calculated on a daylong basis. During
a day, although crop Chl content remains the same, instantaneous
GPP may change significantly due to changes in incoming radiation.
Another uncertainty of the model (Eq. 4) arises because of its failure
to detect the variation in GPP related to short-term (minutes to hours)
changes in controlling factors, such as high temperatures and/or a
decrease in soil moisture, which do not immediately affect crop Chl
content.

4.5. GPP estimation using raw Landsat data

Since Landsat data are now freely available, it is convenient to use
Landsat at-sensor radiance data. However, atmospheric correction is
required to convert Landsat at-sensor radiances to surface reflec-
tance. The procedure of atmospheric correction is quite complicated
and challenging, which may be impractical for users with little or no
appropriate software experience. So, we decided to address the fol-
lowing question: how accurately does the model (Eq. 4) work for
estimating crop GPP with Landsat top-of-atmosphere radiance re-
trieved from images without atmospheric correction? Tables 4a and
4b provide measures of accuracy for the model (Eq. 4), R2, SE and
CV, for GPP estimation using VI retrieved from Landsat atmospheri-
cally corrected images, as well as raw, uncorrected images for maize
and soybean at the NE sites from 2001 through 2008. All six indices,
calculated using TOA reflectance, were able to estimate GPP reason-
ably well, with CVs below 20% in maize and CVs below 30% in soy-
bean. One reason for such an accurate GPP estimation using the
Landsat TOA reflectance is that Landsat images, used in this study,
were mostly taken on clear days, when reflectances were not strongly
affected by atmospheric gasses and aerosols. In addition, VI were cal-
culated as mathematical combinations of reflectance ratios or as

Sample # A B

Date 7/15/2008 9/17/2008
fAPARgreen 0.78 0.19
Green LAI, m2/m2 1.5 0.5
Total LAI, m2/m2 1.5 2.3
NIR, % 33 39
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Fig. 9. (a) Soybean biophysical characteristics for two cases: sample A at the green-up
stage and sample B at the senescence stage. The relationship of GPP/PARpotential vs. (b)
CIgreen and (c) NIR reflectance.
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malized differences to reduce the dependence on atmospheric effects.
Further analyses are needed to confirm these findings.

5. Conclusions

The model based on total crop chlorophyll content and potential
PAR was tested for estimating GPP in maize and soybean, crops
with contrasting leaf structures and canopy architectures. Several
vegetation indices were used as proxies of chlorophyll content. The
model was capable of estimating GPP using atmospherically corrected
Landsat data with coefficients of variation of 23% for maize and below
30% for soybean. The indices using green and NIR Landsat bands were
found to be the most accurate in GPP estimation. Our results showed
that the model based solely on satellite data is robust in estimating
GPP and represents a significant improvement over MODIS GPP for
croplands. One drawback is the poor temporal resolution of Landsat
compared to MODIS. A data fusion of MODIS and Landsat may be a
worthwhile next step in the effort to estimate daily GPP. The model
was also capable of estimating GPP using raw imagery; i.e., TOA reflec-
tance. The algorithms established in the NE maize and soybean study
sites were validated for the same crops in Minnesota, Iowa and Illinois.
Future study should determine uncertainties of established algorithms
for GPP estimation in other crops with no re-parameterization. It is
also essential to test these algorithms in different geographic regions.

In this paper, we used maximal values of measured PARin as a sur-
rogate for PARpotential. The next step is to calculate PARpotential using
radiative transfer approaches and to test the model using Landsat
and MODIS data with calculated daily PARpotential. Having 11 years
GPP data at three Nebraska AmeriFlux sites will allow comprehensive
testing of the model based on chlorophyll related indices and calcu-
lated PARpotential.
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