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Satellite-based passive microwave remote sensing has been shown to be a valuable tool in mapping and moni-
toring global soil moisture. The Advanced Microwave Scanning Radiometer on the Aqua platform (AMSR-E)
has made significant contributions to this application. As the result of agency and individual initiatives, several
approaches for the retrieval of soil moisture from AMSR-E have been proposed and implemented. Although
the majority of these are based on the same Radiative Transfer Equation, studies have shown that the resulting
soil moisture estimates can differ significantly. A primary goal of this investigation is to understand these differ-
ences and develop a suitable approach to potentially improve the algorithm currently used by NASA in producing
its operational soil moisture product. In order to achieve this goal, the theoretical basis of several alternative soil
moisture retrieval algorithms are examined. Analysis has focused onfive established approaches: the operational
algorithm adopted by NASA, which is referred to as the Normalized Polarization Difference algorithm, the Single
Channel Algorithm, the Land Parameter Retrieval Model, the University of Montana soil moisture algorithm, and
the HydroAlgo Artificial Neural Network algorithm. Previous comparisons of these algorithms in the literature
have typically focused on the retrieved soil moisture products, and employed different metrics and data sets,
and have resulted in differing conclusions. In this investigation we attempt to provide a more thorough under-
standing of the fundamental differences between the algorithms and how these differences affect their perfor-
mance in terms of range of soil moisture provided. The comparative overview presented in the paper is based
on the operating versions of the source codes of the individual algorithms. Analysis has indicated that the differ-
ences between algorithms lie in the specific parameterizations and assumptions of each algorithm. The compar-
ative overview of the theoretical basis of the approaches is linked to differences found in the soil moisture
retrievals, leading to suggestions for improvements and increased reliability in these algorithms.

Published by Elsevier Inc.
1. Introduction

Global soil moisture (SM) is an important component of the terres-
trial water cycle. The acceptance and integration of SM in models and
decision processes have been in part the result of the availability of
satellite-based products derived using microwave remote sensing
(Bolten et al., 2010; Drusch, 2007). Depending on the source of energy,
microwave remote sensing techniques can be grouped in two
emote Sensing Lab, BARC-West,
l.: +1 301 504 9109.
. Mladenova).

.

categories: active (radar/backscatter)-based and passive (radiometer/
brightness temperature)-based. Here we will be concerned only with
passive microwave remote sensing.

The soil moisture information provided by passive microwave
remote sensing lies in the complex atmosphere–land (surface/
sub-surface)-system interactions described by a Radiative Transfer
Equation (RTE) (Kerr and Njoku, 1990; Ulaby et al., 1986).
Implementation of this model requires characterizing the compo-
nents of the geo-/bio-physical system and providing parameters that
may be dependent on the system configuration. If all of these factors
are considered to be significant and incorporated into the algorithm,
this can result in an under-determined system of equations (i.e., more
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unknowns than measurements), regardless of how many frequencies
and polarizations are available. Implementing theory into a practical
soil moisture retrieval algorithm requires a reduction in the dimension-
ality by making simplifying assumptions or providing a priori estimates
of some parameters (ancillary data). Different algorithms have evolved
based upon how the developers have dealt with the dimensionality
and the characteristics of the observing system.

One of the most important factors influencing the proliferation of
satellite-based soil moisture mapping has been the Advanced Micro-
wave Scanning Radiometer on NASA's Earth Observing System Aqua
satellite (AMSR-E, http://www.ghcc.msfc.nasa.gov/AMSR/). AMSR-E
has provided a 10-year data record that is now being extended by the
recently launched AMSR2 instrument on the Japanese Aerospace Explo-
ration Agency (JAXA) Global Climate Observing Mission-Water satellite
(GCOM-W, http://www.jaxa.jp/projects/sat/gcom_w/index_e.html),
potentially leading to a consistent long-term climate data record obtain-
ed from the same instrument. The availability of such a long-term global
data record will benefit research studies that require information on
long-term soil moisture trends.

Both NASA and JAXA have supported development of standard soil
moisture products (Kawanishi et al., 2003; Shibata et al., 2003). Re-
search studies that have used the NASA AMSR-E standard soil moisture
products available from the National Snow and Ice Data Center (NSIDC;
http://nsidc.org/data/ae_land.html) have noted performance issues
with the NASA standard products derived using the Normalized Polari-
zation Difference algorithm developed by Njoku and Chan (2006), spe-
cifically a narrow dynamic range and inadequate temporal response of
the soil moisture retrievals (Draper et al., 2009; Jackson et al., 2010),
where the later is considered to be the most important indicator of
the skill of soil moisture product (Koster et al., 2009; Reichle et al.,
2004). In this study our goal was to investigate the sensitivity of the
NPD algorithm, to define its temporal dynamics through inter-
comparisonswith other established soil moisture algorithms, and to ex-
plore whether the algorithm performance can be improved by
implementing elements of other more recently established soil mois-
ture algorithms.

In approaching the problem, we limited our scope to using well-
established algorithms that have been peer-reviewed and implemented
at some level by anoperational or data providing agency. In addition,we
stipulated that all algorithms should be capable of being applied global-
ly (subject to flags) and be capable of operating in a stand-alone mode,
i.e., independently of externally-provided dynamic ancillary data. As
noted above, our motivation for this investigation was to gain a better
understating of the NPD algorithm data product distributed through
the NSIDC (http://nsidc.org/data/amsre/), which uses as input NASA
AMSR-E Level 2A data (calibrated brightness temperatures, TB). Within
this context, we focus on approaches that are capable of soil moisture
retrieval using the same AMSR-E-based data set as employed by the
NPD algorithm. It should be noted that JAXA utilizes its own AMSR-E
Level 1 data to produce a soil moisture product. Differences in the cali-
bration processing of the two data sets complicate direct inter-
comparisons. Therefore, we did not include the JAXA standard prod-
uct/algorithm in this investigation and cannot make any direct
Table 1
Algorithm overview table.

Algorithm Agency

1 Normalized Polarization Difference algorithm: NPD National Aeron
2 Single Channel Algorithm: SCA U.S. Departme
3 Land Parameter Retrieval Model: LPRM Free University
4 Land surface retrieval algorithm: UMT University of M
5 HydroAlgo Artificial Neural Network algorithm HA-ANN National Resea

of Applied Phy
conclusions on its comparative performance with the other algorithms.
The analysis presented here is based not only on thepublished literature
but also expands on this with information extracted from the algo-
rithms' source codes and communications with algorithm developers.

The following five approaches were examined:

(1) Normalized Polarization Difference (NPD) algorithm,
(2) Single Channel Algorithm (SCA),
(3) Land Parameter Retrieval Model (LPRM),
(4) University of Montana (UMT) land surface retrieval algorithm,
(5) HydroAlgo Artificial Neural Network-based (HA-ANN) algorithm

All these algorithms are in principle based on the same RTE
(Table 1).

Total TB asmeasured by the satellite at the top of the atmosphere in-
cludes information on all intervening constituents within the satellite
sensor viewing path. The totalmicrowave signal is expressed as an inte-
grated measure of several inter-related components that describe the
three major contributing layers; atmosphere, vegetation and soil. Over-
all, the general data flow and retrieval logic implemented by all algo-
rithms considered here are similar. Implementing soil moisture
retrieval requires that the attenuating components, i.e. atmospheric
water vapor, vegetation, roughness, etc., are correctly accounted for.
As discussed later, there are various ways to do this.

This study is not meant as a quantitative inter-comparison; several
of these have been presented in the literature (Crow et al., 2010;
Draper et al., 2009; Jackson et al., 2010). Instead, this paper offers an
in-depth conceptual discussion focused on the theoretical background
of the suite of algorithms selected, and attempts to present them in par-
allel. We will be attempting to understand how the basic premises of
the algorithms impact their performance in terms of the range of soil
moisture provided. The approach followed in this paper is to: (1) pres-
ent a comparative overview of the theoretical bases of available passive-
based approaches that are compatible with AMSR-E (based upon our
specified filters); (2) outline differences and clarify their importance
to the sensitivity of the final SM estimates; and (3) address the option
of possible transferability in terms of theoretical components (i.e. atmo-
spheric correction, vegetation/roughness modeling, etc.) between the
approaches. Potential outcomes of the current study include gaining a
better understanding of the available retrieval approaches, identifying
causes of the observeddifferences between the retrievals, and providing
guidelines for reprocessing of the archived AMSR-E soil moisture data
using a modification or upgrade of the NPD algorithm. Furthermore,
the analyses may provide valuable algorithm feedback for other soil
moisture missions such as GCOM-W (Imaoka et al., 2010; Oki et al.,
2010), Soil Moisture Ocean Salinity (SMOS; Kerr et al., 2012), and Soil
Moisture Active Passive (SMAP; Entekhabi et al., 2010).

The paper is structured as follows: Section 2 is composed of two
parts that provide a historic overview and introduce the common back-
ground of the currently available techniques. The specific components
pertinent to each individual approach are then discussed separately
for each algorithm in Section 3. Section 4 aims at providing a compara-
tive theoretical overviewof the algorithm-specific RTE solutions, aswell
Reference

autics Space Administration, USA Njoku and Chan (2006)
nt of Agriculture, USA Jackson (1993)
of Amsterdam, the Netherlands Owe et al. (2001), De Jeu and Owe (2003)
ontana, USA Jones et al. (2009), Jones et al.(2011)
rch Council, Nello Carrara Institute
sics, Italy

Santi et al. (2012)
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as the key biophysical components and the approaches used for their
estimation. The major highlights are then summarized in Section 5.
2. Algorithm theoretical basis

2.1. Timeline and motivation

Developments in the area of passive microwave remote sensing of
SM have gone through three major stages: (I) acquiring a general theo-
retical knowledge and basic understanding of themicrowave signal and
its relation to land surface variables and processes, (II) establishing
theoretically-based soil moisture retrieval algorithms for application
to airborne or spaceborne observational data, and (III) global operation-
al implementations.

Beginning in the 1970s and continuing to some degree up to the early
1990s, efforts were concentrated on developing, verifying and improving
the basicmicrowave emissionmodels for smooth and rough soils (i.e. Mo
et al., 1982; Stogryn, 1970; Ulaby et al., 1986; Wilheit, 1978) and soil–
water dielectric mixing models (i.e. Dobson et al., 1985; Hallikainen et
al., 1985; Jackson et al., 1982; Wang and Schmugge, 1980). These efforts
provided the linkage between TB and SM.

In parallel with these early modeling efforts, controlled condition
field campaigns were conducted in order to provide suitable datasets
for understanding and expanding the basic emissivity–soil moisture
relationship, in particular for vegetated conditions (i.e. Ferrazzoli
et al., 1992; Lee, 1974; Paloscia et al., 1993; Poe and Edgerton,
1971; Wang et al., 1982). These experiments focused on exploring
the sensitivity of the measured microwave emission to changes in
the sensor system characteristics (i.e., frequency, polarization, angu-
lar geometry) and ground conditions (i.e., vegetation, roughness, soil
wetness and texture, physical temperature, etc.). From these investi-
gations, baseline approaches to account for three major variables;
physical temperature, roughness and vegetation, were developed
(i.e. Choudhury et al., 1979; Jackson and Schmugge, 1991;
Kirdiashev et al., 1979; Mo and Schmugge, 1987; Wang and
Choudhury, 1981). These advances resulted in the form of the
RTE that has been applied to vegetative conditions (the τ–ω model;
Mo et al., 1982), which serves as the basis for almost all retrieval
algorithms.

The above research also defined the benefits of using low frequency
(b11 GHz) passive microwave observations for routine and large scale
soil moisture mapping. However, operational efforts have been
constrained by antenna technology and the availability of suitable radi-
ometer systems in space. Data collection using space-borne microwave
radiometers dates back to the early 1960s (see Chapter 14 and
Table 14.1 in Sharkov, 2003). These data include the S-194 microwave
sensor that operated on Skylab in the 1970s (http://www.eoportal.org/
directory/pres_SkylabSpaceStation.html), which incorporated the opti-
mal frequency (1.4 GHz) for surface soil moisture retrieval, but provided
observations with very limited temporal and spatial coverage and low
resolution (Jackson et al., 2004). Another low frequency-instrument
was the Scanning Multichannel Microwave Radiometer (SMMR, http://
nsidc.org/daac/projects/passivemicro/smmr.html) on Nimbus 7 that col-
lectedmulti-frequency (6.6, 10.7, 18.0 and 37.0 GHz) data at low resolu-
tion (150 km for C-band). Additional operationally oriented satellite
microwave sensorswith limited potential for soil moisture retrieval in-
clude the Special Sensor Microwave/Imager (SSM/I, http://nsidc.org/
data/docs/daac/ssmi_instrument.gd.html) carried aboard the Defense
Meteorological Satellite Program (DMSP) satellites (1987–present),
which has good temporal coverage but a suboptimal frequency range
(N19.3 GHz). The Tropical Rainfall MeasuringMission's (TRMM)Micro-
wave Imager (TMI, http://trmm.gsfc.nasa.gov/overview_dir/tmi.html)
is another operational system that includes a 10.6 GHz channel with ap-
proximately 50 km spatial resolution, but only covers a limited latitude
range (38°N–38°S).
Stage II was aided by the publication of the first complete RTE-based
algorithm that allowed direct TB–SM inversion (Jackson and Schmugge,
1989), which is referred to as the Single Channel Algorithm (SCA). This
approach was developed initially to support the relatively simple in-
strument configurations that were available on aircraft platforms. In
this approach the soil moisture contribution is estimated by sequential-
ly performing temperature normalization, removing the attenuating
effects of the overlaying vegetation and atmosphere, and estimating
the associated smooth (i.e. removed the surface roughness effects)
surface emissivity using ancillary data. The Fresnel equation is used to
convert the emissivity to a dielectric constant and then the resulting
estimate of the dielectric constant is linked to soil moisture using a di-
electric mixing model. The SCA will be discussed in more detail later
in the paper.

With AMSR-E on the horizon, Njoku and Li (1999) proposed an algo-
rithm that would attempt to utilize all of the lowest three frequency
channels of the instrument (C, X, and Ka) in an iterative optimization
scheme to simultaneously solve the RTE for soil moisture, vegetation
water content and surface temperature. Other multichannel AMSR-E
algorithms were also developed subsequently as discussed below.

Stage III began in the late 1990s with the preparation for launch of
AMSR-E in 2002 (as well as the short-lived AMSR). This instrument
brought together several important design features; global coverage,
moderate spatial resolution, multi-frequency passive microwave
observations that included low frequencies, and publicly available data
provided in a timely manner. It was designed to satisfy retrieval of a
wide range of geophysical variables, which for the first time included
an operational soil moisture product (Kawanishi et al., 2003; Shibata
et al., 2003). Both NASA and JAXA supported the implementation of
soil moisture as a standard product but took somewhat different ap-
proaches to selecting an algorithm. NASA solicited proposals and select-
ed a single team/algorithm for a specific set of products. The original
version of the SM algorithm was described in Njoku and Li (1999) and
Njoku et al. (2003). This was later modified significantly to include ele-
ments described in Njoku and Chan (2006) and is referred to as the
Normalized Polarization Difference algorithm.

JAXA on the other hand solicited proposals and identified four alter-
native methods as research algorithms (including the original Njoku
and Li (1999) algorithm). Over a period of several years, these algo-
rithms were evaluated by benchmarking against common in situ
datasets, before selecting the algorithm described in Koike et al.
(2004) and Lu et al. (2009) as the JAXA standard algorithm. In addition,
JAXA offered continued support to the other approaches as research al-
gorithms, including the Single Channel Algorithm (Jackson, 1993) and a
retrieval approach developed by Paloscia et al. (2001) and Paloscia et al.
(2006).

The routine availability of AMSR-E TB data stimulated later develop-
ment and evolution of several other algorithm approaches leading to
the LPRM (De Jeu and Owe, 2003; Owe et al. 2001), UMT (Jones et al.,
2009, 2010), and HA-ANN (Santi et al., 2012) soil moisture products.

The algorithms presented and discussed here have several common
components: all

(1) are based on the sameRTE formulation and utilize the τ–ωmodel
of Mo et al. (1982) to represent the electromagnetic radiation
from the Earth's surface;

(2) correct for the vegetation and roughness effects;
(3) assume horizontal homogeneity over the land portion of the

satellite footprint and ignore the vertical variability within the
atmospheric, vegetation and soil layers;

(4) assume that effective temperature of the emitting soil and
the overlying vegetation layer are approximately the same, i.e.
Tc ≅ Ts;

(5) utilize the Fresnel equations to relate the microwave reflectivity
to the dielectric properties of the soil;

(6) rely on soil texture data as an ancillary input, necessary for the

http://www.eoportal.org/directory/pres_SkylabSpaceStation.html)
http://www.eoportal.org/directory/pres_SkylabSpaceStation.html)
http://nsidc.org/daac/projects/passivemicro/smmr.html)
http://nsidc.org/daac/projects/passivemicro/smmr.html)
http://nsidc.org/data/docs/daac/ssmi_instrument.gd.html)
http://nsidc.org/data/docs/daac/ssmi_instrument.gd.html)
http://trmm.gsfc.nasa.gov/overview_dir/tmi.html)


Table 2
Symbols, annotation and abbreviations.

Parameter Symbol

1. Modeling
TB Brightness temperature
T Effective/physical temperature
SM Soil moisture
κ(′/″) (Real/imaginary) part of the complex dielectric constant

of the soil–water mixture
R Reflectivity
e Emissivity
Γ Transmissivity
τ Optical depth
ω Single scattering albedo
g Vegetation–roughness parameter
a Frequency dependent proportionality constant
ts Current ground conditions
h, Q Roughness parameters
b Vegetation parameter
MOD/OBS MODeled/OBServed
F( ) or ( ) Function of ( )
C#, β#, x#, a#, b# Model coefficients (# = 0, 1, 2,…)

2. System
p Polarization
H Horizontal polarization
V Vertical polarization
f Frequency
θ Incidence angle

3. Terrain/media
rough Rough surface conditions
smooth Smooth surface conditions
effective Effective physical temperature
composite Composite surface emissivity (UMT)
t Total
l Land
s Soil
a Atmosphere
c Canopy/vegetation
w Water
ice, rock, air Ice, rock, air
dry Dry soil moisture conditions
βd Soil bulk density

4. Ratios/indices
NDVI Normalized Difference Vegetation Index
NPD Normalized Polarization Difference
MPDI Microwave Polarization Difference Index
MAWVI Microwave Atmospheric Water Vapor Index
V Vertical Atmospheric Water vapor Content
VWC Vegetation Water Content
a Slope of the land–water emissivity ratio (UMT)
FI Frequency Index
PR Polarization ratio

5. Other
AMSR-E Advanced Microwave Scanning Radiometer
SMOS Soil Moisture Ocean Salinity
SMAP Soil Moisture Active Passive
AVHRR Advanced Very high Resolution Radiometer
MODIS MODerate resolution Imaging Spectroradiometer
UMD University of Maryland land cover classification scheme
IGBP International Geosphere–Biosphere Programme
GLDAS Global Land Data Assimilation System data products
FNOC US Naval Fleet Numerical Oceanographic Center
ATBD Algorithm Theoretical Basis Documents
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inversion from dielectric constant to soil moisture;
(7) do not attempt retrieval over RFI contaminated areas, frozen

soils, densely vegetated and snow-covered areas, and open
water.

HA-ANNuses artificial neural network-based training for SM estima-
tion, which relies on field-collected SMmeasurements concurrent with
TB observations. The TB data set includes both actual and simulated
brightness temperature data, where the latter are generated using RTE
modeling. Therefore, the above listed similarities are also relevant to
the HA-ANN algorithm.

Items (6) and (7) typically involve the use of ancillary data sets or
threshold-based techniques, which generally vary with the algorithms.
Some of the commonly used ancillary data sets include soil texture and
land cover information. Details on the algorithm specific data sets used
will be introducedwhen discussing the individual approaches. Ancillary
data sets have two roles in these algorithms: providing input for the
actual retrieval and as information for identifying areas where the re-
trieval is not feasible (flags), i.e. open water bodies, frozen soils, etc.
Along with the choice of the ancillary data set there are several related
factors that also need to be considered: the land cover classification
scheme and any gridding or post-processing techniques involved. For
example, it should be noted that, in general, the data sets employed
by the individual approaches do not have the same native spatial reso-
lution as AMSR-E. The desired land information may be extracted or
the data may be gridded using different sampling logic (i.e. land cover
type/ground conditions: nearest distance vs. the dominant type; soil
characteristics: nearest distance vs. average; swath to grid conversion:
last drop in the bucket vs. linear averaging). The choice of post-
processing logic can introduce differences in terms of ground conditions
used in the individual retrievals for the same location.

Before discussing the actual equations, the annotation logic adopted
in this paper is introduced. This attempts to resolve the different termi-
nology and symbols used by the different algorithms. System-related
parameters are shown as subscripts (i.e. Table 2.2), while any other
characteristic used to describe ground conditions or specify emitting
media are shown as superscripts (i.e. Table 2.3). Please refer to Table 2
for a full list of symbols/abbreviations.

2.2. General background

The overall retrieval process, shown schematically in Fig. 1, includes
two major components: modeling the thermal radiation from the earth
surface using radiative transfer theory and applying a dielectric mixing
model to estimate SM. These two elements are related through the
Fresnel reflectivity model (Eqs. 1a and 1b).

Rsmooth
f ;Hð Þ ¼

cosθ− κ− sin2θ
� �0:5

cosθþ κ− sin2θ
� �0:5

�������
�������
2

ð1aÞ

Rsmooth
f ;Vð Þ ¼

κ cosθ− κ− sin2θ
� �0:5

κ cosθþ κ− sin2θ
� �0:5

�������
�������
2

: ð1bÞ

For a specific frequency (f), the smooth soil reflectivity (R), is a func-
tion of polarization (p = H or V), where H or V indicates horizontal or
vertical polarization, respectively, incidence angle (θ), and complex di-
electric constant of the soil–water mixture (κ). κ is dependent upon
the water content. The real part of the dielectric constant κ′ describes
the propagation characteristics of the energy through the soil, while κ″
characterizes the energy loss in the soil. At the low frequency range con-
sidered here κ″ is relatively small compared to κ′ (Dobson et al., 1985;
Hallikainen et al., 1985; Wang and Schmugge, 1980). By low frequency
range in this paper wemean f≤ 11 GHz, which includes the two lowest
AMSR-E frequencies 6.9 and 10.7 GHz. Sincewe are concerned here only
with AMSR-E, which is a constant incidence angle (θ) system, the θ de-
pendence will be omitted from further equations for simplicity.

The surface reflectivity R(f, p) at microwave frequencies is related to
the emissivity e(f, p) by: R(f, p) = 1 − e(f, p). The emissivity is derived
from the radiative transfer model:

Tt
B f ;pð Þ ¼ Ta↑

B f ;pð Þ þ e−τaf ;pð Þ 1−eroughf ;pð Þ
� �

Ta↓
B f ;pð Þ þ e−τaf ;pð ÞTsky

B

� �
þ e−τaf ;pð ÞTl

B f ;pð Þ;

ð2Þ



Fig. 1. Schematic representation of a passive-based soil moisture retrieval model. Shown
here is the general data flow of both forward and inverse modeling. Solutions are based
on solving the radiative transfer set of equations and estimating the soil water content
through using a soil–water dielectric model.
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where TB
t (f, p) indicates the total brightness temperature as measured

by the satellite, often called top of atmosphere brightness temperature,
TB
l (f, p) is the brightness temperature of the land, TB(f, p)a↑/↓ and TB

sky stand
for up-/down-welling atmospheric and sky temperatures, respectively,
and e(f, p)

rough is the emissivity of rough soil. The attenuating effects
of the atmosphere is accounted for by the opacity terms τ(f, p)

a,
which refer to the opacity along the slant path through the
atmosphere.

An explanation of Eq. (2) is given by Kerr and Njoku (1990). The first
term is the atmospheric emission that propagates upwards directly to-
wards the radiometer system. The second term is the sum of the atmo-
spherically attenuated cosmic background emission and the downward
atmospheric emission, which is reflected at the land surface and then
attenuated by the atmosphere. The last term summarizes the atmo-
spherically attenuated upwelling radiation emitted by the land surface
(TBl (f, p)).

Themagnitude of the atmospheric contribution varies with frequen-
cy. At the lowmicrowave frequencies used for retrieval of soil moisture
(i.e. L-, C- and X-band) the atmospheric contribution is negligible
relative to TB

l (f, p) and, most importantly, the atmospheric opacity
(τa(f, p)) is very low (Ulaby et al., 1986). Thus, for soil moisture retrieval
the atmosphere can be well approximated as a transparent layer
(Jackson, 1993), in which case TB(f,p)

t ≅ TB(f,p)
l .
The complete formulation of TBl(f, p) is given byMo et al. (1982) and
is known as the τ–ω model

Tl
B f ;pð Þ ¼ Tseroughf ;pð Þ e

−τc f ;pð Þ þ Tc 1−ω f ;pð Þ
� �

1−e−τc f ;pð Þ
� �

þ e−τc f ;pð ÞTc 1−ω f ;pð Þ
� �

1−e−τc f ;pð Þ
� �

1−eroughf ;pð Þ
� �

; ð3Þ

where τ(f, p)c is vegetation optical depth,ω(f,p) is the single scattering al-
bedo, and Tc and Ts are the physical temperatures of the vegetation and
the soil layers, respectively.

Eq. (3) shows that the total upward land radiation is composed of
three terms: direct upward soil radiation attenuated by the vegetation,
direct upward canopy radiation, and downward canopy radiation. As
with the atmospheric radiation, the radiation emitted by the canopy
can be both upward (second term of Eq. 3) and downward towards
the soil surface, where the latter is reflected backward towards the radi-
ometer and attenuated again by the canopy (third term of Eq. 3). The
τ–ω model ignores multiple scattering within the vegetation layer,
which is considered a reasonable assumption at the (low) frequency
range used for soil moisture sensing.

In Eq. (3) the soil and vegetation media are modeled as homoge-
neous layers with temperatures T s and T c, respectively. When the
media characteristics are non-uniform over the radiative emission
depths the temperatures and emissivities in Eq. (3) are considered as
“effective” parameters (weighted averages over the emission paths).
In the context of passive-based retrieval of soil moisture, the soil and
vegetation continuum is modeled as continuous uniform layers that
have been assumed to have equal temperatures (i.e. Ts ≅ Tc).

The relationship between rough and smooth surface reflectivity can
be modeled using the h–Q formulation described byWang et al. (1983)

Rs;rough
f ;Hð Þ ¼ 1−Q fð Þ

� �
Rs;smooth

f ;Hð Þ þ Q fð ÞR
s;smooth
f ;Vð Þ

h i
e−G θð Þh fð Þ ; ð4aÞ

and

Rs;rough
f ;Vð Þ ¼ 1−Q fð Þ

� �
Rs;smooth

f ;Vð Þ þ Q fð ÞR
s;smooth
f ;Hð Þ

h i
e−G θð Þh fð Þ : ð4bÞ

h(f) and Q(f) are parameters related to the surface root mean square
(RMS) height and horizontal roughness correlation length, and G(θ)
≅ 1, where G is generally a function dependent on incidence angle.
Eq. (4) is an extension of an earlier roughness model developed by
Choudhury et al. (1979), which is equivalent to Eqs. (4a) and (4b)
with Q(f) = 0 and G(θ) = cos 2θ.

The vegetation attenuation effect in the τ–ωmodel is represented by
the ω( f,p) and τ( f,p)c parameters, which are dependent on vegetation
water content and structure, incidence angle, frequency and polariza-
tion (Van De Griend and Wigneron, 2004). Confirmation of the ω(f,p)

and τ(f,p)c dependence on polarization in the literature is limited. Some
of the past experiments have demonstrated minimal variability in veg-
etation attenuation properties between H- and V-pol over agricultural
fields,where the individual plant constituents had a distinct preferential
orientation (Ulaby et al., 1986; Van De Griend and Owe, 1994). Conse-
quently, in approaches that use dual-polarizations or polarization-
based indices (i.e. NPD LPRM, UMT) it is assumed that ω(f,H) = ω(f,V)

and τ(f,H)c = τ(f,V)c . This assumption results in simplification of the ω(f)

and τ(f)c expressions.
The single scattering albedo accounts for the canopy volume scatter-

ing and total extinction properties and is expressed as the ratio of these
two quantities (Mo et al., 1982; Ulaby and Wilson, 1985; Ulaby et al.,
1986). However, there is limited information on the temporal or canopy
type variability of this parameter. All of the algorithm approaches con-
sidered here use a constant global value. Overall, the reported ω(f)

values are generally small (0.04 b ω(f) b 0.12; Jackson and O'Neill,
1991; Van De Griend and Owe, 1994). As summarized by Van De
Griend and Owe, (1994) ω(f) has a minimal/negligible effect on the
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range of the emitted radiation from vegetated surfaces at microwave
wavelengths.

If we use the simplifying assumptions discussed above, where Ts ≅ Tc

and ω(f) = 0, we obtain the following important simplification of
Eq. (3), i.e.

Tl
B f ;pð Þ ¼ Ts 1−Rrough

f ;pð Þ e
−2τc f ;pð Þ

� �
: ð5Þ

Among all the parameters that impact soil moisture retrieval, vege-
tation water content (VWC) is the most significant (Jackson and
Schmugge, 1991). The vegetation opacity τ(f)c is governed by the thick-
ness of the vegetation layer and its extinction properties, which in
turn are functionally related to the VWC and depend also on the type
of vegetation and its structure. Thus, the vegetation opacity is expected
to have significant temporal and spatial variability.

The vegetation opacity can be expressed as a function of the vegeta-
tion water content (Jackson and Schmugge, 1991).

τcfð Þ ¼ bcfð Þ � VWC; ð6Þ

where b(f)
c is a vegetation parameter that is dependent on vegetation

type, polarization, frequency and incidence angle.
A schematic representation of the major steps involved in the soil

moisture retrieval process is shown in Fig. 1. Additional information
on the algorithm-specific correction models is given in Fig. 2 and
Tables 3–5, and further described in the following sections.
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Fig. 2. Flowcharts illustrating the theoretical basis of the NPD SCA, LPRM, and UMT retrieval ap
gorithm is based on a forward-based solution of the τ–ωmodel. The vegetation–roughness par
rameter retrieval model, where vegetation parameterization is done using ancillary information
pol TB(f,p)t , where the modeled value is computed using forward-based solution of the RTEmode
tribution through an extrawater fraction correction,where thewater fraction value is determin
theoretical e(f,p)− SM curve. Notes: TheNPD algorithm is summarized using two flowcharts: to
flowchart illustrates the τ–ω calibration runs. The calibration portion of themodel includes two
See Section 3.1 for more details.
3. Algorithms

This section introduces the theoretical basis of the algorithms,
highlighting their key components and describing their general pro-
cessing flow, which is schematically illustrated in Fig. 2. As mentioned
earlier, in addition to the different approaches taken by each algorithm
in implementing the RTE model, there will be differences associated
with the choice of ancillary data, screening for unreliable data (i.e. RFI)
or specific ground conditions for which reliable retrievals are not possi-
ble (i.e. frozen soils, dense vegetation, etc.), and the methods for
gridding.

Information on algorithm-specific ancillary data sets and fixed pa-
rameters is provided in Table 3. We recognize that a thorough inter-
comparison of the algorithms would include normalization of ancillary
data, flags, and gridding/posting variations. However, this could only
be achieved by substantially re-coding each algorithm and is beyond
the scope of this investigation.

The subset of algorithms included in this investigation was based on
those that met the following requirements: (1) supports a routine prod-
uct by an agency, (2) code implemented using AMSR-E Level 2A data as
provided by the NSIDC, and (3) code well documented in the literature
and available to us. Two algorithms used to produce routine global soil
moisture products were not included since they did not meet these re-
quirements, namely the WindSat algorithm (Li et al., 2010) and the
JAXA standard algorithm (Imaoka et al., 2010; Oki et al., 2010). Li et al.
(2010) have implemented a variation of the iterative optimization
schemeproposed byNjoku and Li (1999); however, the parameterization
10H
l

+
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ooth
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proach. All four approaches are based on the τ–ω model. The present operational NPD al-
ameter g and SM are expressed as a function ofMPDI(f). SCA is an inverse-based, single pa-
. LRPM retrieval is based on optimizing the difference betweenmodeled and observed H-
l. UMT partitions the composite land surface emissivity between land only and water con-
ed using higher frequencies AMSR-E data. TheUMT soilmoisture product is derived using a
p flowchart provides a general illustration of the overall retrieval process, while the bottom
related loops, [A] (i.e. roughness calibration) and [B] (vegetation related parameterization).



Table 3
Algorithms input data and outputs.

Algorithm Inputs Outputs

(1) NPD [1] 6H/V, 10H/V, 18H/V, 89H SM
Vegetation characteristics[2] Surface characteristics

Min. monthly MPDI climatology
FNOC
AMSR-E

[3] Regression coefficients
(2) SCA [1] 10.6H, 18H/V, 23V, 36V, 89V SM

[2] FAO soil data base
NDVI climatology
Land cover map

Shape map
AVHRR
Landsat/UMD

[3] b, h, ω, κrock, κice

θ, f
(3) LPRM [1] 6H/V, 10.6H/V, 36V SM

Vegetation characteristics
Effective (soil) temperature

[2] FAO soil data base GLDAS
[3] Q, h, ω, τa, Tsky, κrock, κice, κair, θ, f

(4) UMT [1] 6H/V, 10.6H/V, 18H/V, 23H/V, 36H/V, 89H/V SM
Vegetation characteristics
Effective (air) temperature
Water fraction
Integrated water vapor content

[2] –

[3] ω, α, ew, ebaresoil

θ, f
Regression coefficients
Sand, clay, silt, βd for loam

(5) HA-ANN [1] 6H/V, 10H/V, 18H/V, 36H/V SM
Vegetation biomass

Notes: [1], [2], [3] — AMSR-E channels used in the retrieval, static global data sets, fixed parameters; not listed in the table: all approaches use the default AMSR-E land/ocean mask.
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is specific to the WindSat channels and overpass times and is not easily
transferable for use with AMSR-E data. Furthermore, the code was not
available. JAXA products are available, but are derived from a different
TB product. In addition, the code was not available, which prevented us
from implementing the JAXA algorithm with the NASA TB input data.
3.1. Normalized Polarization Difference (NPD) algorithm

Since the NPD algorithm is the primary focus of this investigation it
will be discussed in more detail than the other approaches. The algo-
rithm is based on the radiative transfer models described above
(Eqs. 3, 4a, 4b, and 6) and the assumption that atmospheric effects can
be neglected without impacting soil moisture retrieval error when
using the X-band frequency. Initial implementation of the original
Njoku and Li (1999) approach was done using C-band observations.
However, due to RFI contamination of the AMSR-E C-band data
Table 4
General RTE modeling and assumptions.

Algorithm Some assumptions Eq. (2)

Modified equation

(1) NPD ω = 0
Tc = Ts

ω & τc un-polarized
TB
t = TB

l (i.e. no atm. contribution)

TB
t = TB

l

(2) SCA ω = 0
Tc = Ts

Constant atm. contribution

TB
t = const. + TB

l

(3) LPRM Tc = Ts

ω & τc un-polarized
Fully solved

(4) UMT Geophysicala Ignores the surface reflection term
Tc = Ts

ω & τc un-polarized

TB
t = Ts[Γaecomposite + (

SM Tc = Ts

ω & τc un-polarized
TB
t = TB

l

Eq. (2): Tt
B f ;pð Þ ¼ Ta↑

B f ;pð Þ þ e−τaf ;pð Þ 1−eroughf ;pð Þ
� �

Ta↑
B f ;pð Þþ

−τaf ;pð Þ Tsky
B

� �
e−2τc f ;pð Þ þ e−τaf ;pð Þ Tl

B f ;pð Þ

Eq. (3): Tl
B f ;pð Þ ¼ Tseroughf ;pð Þ e

−τc
f ;pð Þ þ Tc 1−ω f ;pð Þ

� �
1−e−τc

f ;pð Þ
� �

þ e−τc
f ;pð Þ Tc 1−ω f ;pð Þ

� �
1−e−τc

f ;pð Þ
�

Notes: Equation numeration in the table: the 1st number refers to the complete RTE (2) or the
number listed in the first column of this table. For example, Eq. (3.1) indicates NPD specific so

a The UMT geophysical retrieval model provides information about the additional land surfa
moisture retrieval algorithm (see Section 3.4).
discovered after launch, especially over the U.S., the operational SM
product is currently derived using X-band brightness temperature
data which has much less RFI contamination.

The foundation of the algorithm is the use of the Normalized Polari-
zation Difference. In should be noted that NPD and the Microwave Po-
larization Difference Index (MPDI) are equivalent and as shown below
are computed using the same equation (equation 7); however, the de-
velopers of the alternative approaches (i.e. NPD, LPRM, HA-ANN) refer
to this index in a different way.

MPDI fð Þ ¼ NPD fð Þ ¼ Tt
B f ;Vð Þ−Tt

B f ;Hð Þ
h i

= Tt
B f ;Vð Þ þ Tt

B f ;Hð Þ
h i

: ð7Þ

The MPDI(f) is used since it can be approximated in a form that is
independent of surface temperature and has separable soil moisture
and vegetation dependencies. Using Eq. (5) (i.e., assuming Ts ≅ Tc and
ω(f) = 0) and substituting Eqs. (4a) and (4b) (with G(θ) ≅ 1) and
Eq. (3) Derivation of the component specific
solutions

Modified equation

TB
l = Ts[1− (1− es,rough)Γ2] Ts − independent

τc − MPDI + Eq. (3.1)

TB
l = Ts[1− (1− es,rough)Γ2] Ts − regression

τc − ancillary

Fully solved Ts − regression
τc − MPDI + Eq. (3)

1− Γa)] ecomposite = wf × ew + (1− wf)el

el = esΓc + (1− ω)(1− Γc)
Ts − Eq. (2.4)
Γa − Eq. (2.4)
V − MAWVI18 + 23

wf− PR18 + Eq. (2.4) + Eq. (3.4)
Γc − FIH,18/23 + Eq. (2.4) + Eq. (3.4)

Fully solved τc − α + Eq. (3)

�
1−eroughf ;pð Þ
� �
τ–ωmodel (3), respectively; the 2nd number, if present, corresponds to the algorithm ID
lution of the τ–ω model.
ce parameters (i.e. effective temperature, fraction of open water, etc.) required by the soil



Table 5
Geophysical retrieval models.

Algorithm (1) Vegetation and roughness (2) Temperature (3) Atm. effects (4) Additional Dielectric mixing

(1) NPD Njoku and Chan (2006) – – Dobson et al. (1985)
MPDI-based Fixed soil properties
Wang and Choudhury (1995)
h − Q
Specific values: ω = 0, τcF(MPDIdry), hG=−, Q= 0.184

(2) SCA Jackson and Schmugge (1991) De Jeu and Owe (2003) – Wang and Schmugge (1980)
NDVI climatology Regression, 37(V) Constant value
Choudhury et al. (1979) Klein and Swift (1977)
h Spatially variable soil properties
Specific values: ω = 0, τcF(NDVI), hG = 0.1 × cos 2θ, Q = −

(3) LPRM Meesters et al. (2005) De Jeu and Owe (2003) Pellarin et al. (2003) Wang and Schmugge (1980)
MPDI-based inversion of the RTE Regression, 37(V) RTE-based solution; regression model expressing

the τa as a function of air temperature
Spatially variable soil properties

Wang and Choudhury (1995)
h − Q
Specific values: ω = 0.06, τcF(MPDI), hG= 0.18 × 1, Q = 0.127

(4) UMT Jones et al. (2011) Jones et al. (2010) Wentz et al. (2000) Jones et al. (2010) Dobson et al. (1985)
Slope-based inversion of the RTE RTE-based inversion, 23(V) Regression model expressing the τa s a function

of oxygen and water vapor
Water fraction correction Fixed soil properties

–

Through Γc

Specific values: ω = 0.06, τcF(α), hG=−, Q= −
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Eq. (7), we obtain:

Tl
B f ;pð Þ ¼ Ts 1− 1−Q fð Þ

� �
Rs;smooth

f ;pð Þ þ Q fð ÞR
s;smooth
f ;qð Þ

h i
e −α fð Þg½ �n o

; ð8Þ

where

α fð Þg ¼ h fð Þ þ 2bcfð Þ � VWC
� �

= cosθ: ð9Þ

As defined earlier Q(f) and h(f) are roughness parameters.
A key concept introduced here is the parameter g, which is a

vegetation/roughness surface characteristic representing combined
RMS height and VWC information. α(f) is a frequency-dependent co-
efficient. The applicability of this lumped parameter representation
is discussed in Njoku and Chan (2006).

Combining Eqs. (7) and (8), and assuming that the atmospheric
effects are negligible (so that we can use TB(f, p)

t = TB(f, p)
l), yields:

MPDI fð Þ ¼ A f ;SMð Þ 1−2Q fð Þ
� �

= 1þ B f ;SMð Þ e α fð Þg½ �−1
� �n o

; ð10Þ

where

A f ;SMð Þ ¼ esmooth
f ;Vð Þ −esmooth

f ;Hð Þ
h i

= esmooth
f ;Vð Þ þ esmooth

f ;Hð Þ
h i

ð11aÞ

B f ;SMð Þ ¼ 2= esmooth
f ;Vð Þ þ esmooth

f ;Hð Þ
h i

: ð11bÞ

A(f,SM) and B(f,SM) are both functions of SM, and A(f,SM) represents the
MPDI(f) of bare, smooth soil.

It was shown in Njoku and Chan (2006) that Eq. (10) can be further
approximated as:

MPDI fð Þ≈A f ;SMð Þ 1−2Q fð Þ
� �

e−β fð Þα fð Þg ; ð12Þ

where β(f) is a coefficient that is approximately independent of soil
moisture. Values for the coefficients Q(f), β(f) and α(f) were obtained
for AMSR-E as described below.

The parameters h(f) and Q(f) have similar impact on MPDI(f) (see
Fig. 1 in Njoku and Chan, 2006) and consequently there is some redun-
dancy in varying both of these parameters to establish best fits. There-
fore, h(f) (incorporated in the α(f)g term) was selected to represent the
spatial variability, while Q(f) was treated as a fixed global factor. Q(f)
was determined for each frequency by calibrating Eq. (12) to the
AMSR-E computedMPDI(f) values over two desert regions with smooth
topography (Niger and Saudi Arabia, see Njoku and Chan (2006) for the
specific coordinates of each box; Q10.7

NPD,Niger = 0.198 and Q10.7
NPDS.Arabia =

0.184). The radiative transfer runs were carried out assuming bare,
smooth, dry land surface conditions with h(f) = 0 and SM = 0.05 m3/
m3. As computed, the Q(f) values estimated over these calibration sites
would represent minimum roughness conditions. The lower Saudi
Arabia Q(f) value was selected as a global parameter. Spatial varia-
tions in surface roughness were then accounted for by allowing h(f)
to vary globally.

The coefficients α(f) and β(f) were determined using a similar ap-
proach. Simulations performed to estimate these parameters were
done using the Dobson dielectric model (Dobson et al., 1985) for dry
(SM=0.05m3/m3) tomoderate (SM=0.20m3/m3) soil moisture con-
ditions assuming uniform (sandy loam) soils.

Calibration of α(f) was performed over a region of naturally varying
vegetation and roughness that had uniform dry soil moisture (portions
of Chad, Sudan, and the Central African Republic). AMSR-E observations
for a dry month (March 2004) over this domain were used to estimate
α(f).

The NPD AMSR-E soil moisture retrieval algorithm is derived from
Eq. (12). Njoku and Chan (2006) examined the sensitivity of the
function A(f,SM)(1 − 2Q(f)), which characterizes the soil moisture
response. The function shows good sensitivity over the full soilmoisture
range, although the sensitivity decreases at higher moisture values (see
Fig. 4 of Njoku and Chan, 2006).

To implement the retrieval, Eq. (12) can be inverted and written in
the form:

A SMð Þ ¼
1

1−2Qð Þ MPDIð Þeβαg ; ð13Þ

where the subscript f has been dropped since the retrieval algorithm
uses only the 10.7 GHz frequency, and A(SM) was defined in Eq. (11a).
Once A(SM) is determined using the observed MPDI and the roughness/
vegetation correction factor (βαg), Eq. (13) can be usedwith the Fresnel
equations, a global soil texture database, and a dielectric model to
determine soilmoisture. Alternatively, a linear approximation to the re-
lationship between A(SM) and soil moisture can be used and Eq. (13)
written as:

SM ¼ a0 þ a1 MPDIð Þeβαg ; ð14Þ
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where a0 and a1 are coefficients that are determined empirically.
Eq. (14) can also be expressed in time-differenced relative change
form, where soil moisture is expressed as a departure from a minimum
or “dry” condition at each location (grid point or pixel). Using this for-
mulation the coefficient a0 drops out:

SM ¼ SMdry þ a1 MPDI−MPDIdry
� �

eβαg : ð15Þ

Similarly, we can write the exponential factor as:

βαg ¼ b1 þ b2 ln MPDIdry
h i

: ð16Þ

The optimum time window for computingMPDIdry for use in these
equations depends on the specific location.

3.2. SCA

The Single Channel Algorithm utilizes the single frequency/
polarization instrument channel that is most sensitive to soil moisture,
and relies on ancillary data to perform corrections for other factors
(including VMC) that affect the retrieval. As with the NPD algorithm,
the AMSR-E implementation of SCA assumes that ω = 0 and that the
atmospheric contribution is minimal. As a result Eqs. (4a), (4b) and
(5) can be used:

Tl
B f ;pð Þ ¼ Ts 1− 1−es;roughf ;pð Þ

� �
e −τc f ;pð Þ= cosθ½ �� �2� �

: ð17Þ

Combining Eqs. (4a), (4b) and (17) with Q(f) = 0 and G(θ) = cos 2θ
following the model of Choudhury et al. (1979), and inverting the
resulting equation, allows us to compute the smooth surface reflectivity:

Rs;smooth
f ;pð Þ ¼ 1−

Tl
B f ;pð Þ
Ts

( )
e h fð Þ cos

2θþ2bc�VWC= cosθ½ �: ð18Þ

For AMSR-E implementation, the physical temperature of the soil is
approximated using the vertically polarized Ka-band AMSR-E bright-
ness temperature (De Jeu and Owe, 2003). The roughness parameter
h(f) is assumed constant at the global scale and is assigned the value h
= 0.1.

Jackson et al. (1999) showed that VWC can be linearly related to
NDVI. In the current investigation VWC is estimated usingNDVImonthly
climatology derived using AVHRR observations from the 1981–1999
time period.

The smooth surface reflectivity (Eq. 18) is related to the dielectric
properties of the soil through the Fresnel reflectivity model. Eq. (1a)
can be inverted to estimate the dielectric constant (Eq. 19).

κ f ;Hð Þ ¼ sin2θþ cos2θ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs;smooth

f ;pð Þ þ 1
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs;smooth

f ;pð Þ −1
q

2
64

3
75
2

: ð19Þ

The Wang and Schmugge (1980) dielectric model is then used to
relate the real part of the dielectric constant to the soil moisture
using ancillary data describing the soil texture. The soil texture
data are obtained from the global soil properties data base described
in Reynolds et al. (2000) (http://www.ngdc.noaa.gov/ecosys/
cdroms/reynolds/reynolds/reynolds.htm).

The SCA has been implemented using the NASA-based L2A bright-
ness temperature data. Currently the retrieval is carried out utilizing
the horizontally polarized X-band AMSR-E observations (and using the
fixed value of θ for AMSR-E). It has also been applied to the JAXA bright-
ness temperature data. The final soil moisture estimates are outputted
into the original resolution of the TB (orbital footprint resolution).
3.3. LPRM

LPRM is a multi-parameter retrieval model that provides estimates
of soil moisture, optical depth and effective temperature without re-
quiring the use of dynamic ancillary data. A schematic representation
of the model is given in Fig. 2. LPRM uses Eqs. (2) and (3) to calculate
TB(f,p)
t for a range of soil moisture values. Utilizing two polarizations

and making the assumptions discussed below allows the simultaneous
estimation of SM and vegetation optical depth (τc) by minimizing the
difference between observed and modeled TB(f,h)

t . LPRM has been ap-
plied using data from different frequencies and satellites (Owe et al.,
2008). For consistency with the other algorithms described in this
paper, only the X-band parameterization is presented here.

The smooth soil reflectivity is computed based on the Wang and
Schmugge dielectric mixingmodel and the Fresnel reflectivity equations
for each soil moisture estimate in the optimization process. With regard
to parameters, as with SCA, those related to roughness (h(10.7) = 0.18;
Q(10.7) = 0.127) and the single scattering albedo (ω(10.7,H = V) = 0.06)
are spatially and temporally fixed. As in the other algorithms presented
here, it is assumed that Ts and Tc are approximately equal. The effective
soil temperature is calculated outside the optimization loop using 36.5
GHz, V-polarized AMSR-E data as described in Holmes et al. (2009). As
with the NPD algorithm, vegetation parameterization (τ(f,p)c ) is based
on a function of MPDI(f), however, as discussed below, LPRM adopts
somewhat different approach.

The optical depth is determined using the analytical solution to the ra-
diative transfer equation as describedbyMeesters et al. (2005). An impor-
tant assumption of LPRM is that the single scattering albedo and optical
depth are polarization independent at the satellite spatial scale (ω(f,H =

V) → ω(f) and τ(f,H = V)
c → τ(f)c ). Polarization independence of the vegeta-

tion optical depth at satellite scale was tested and confirmed by Owe
et al. (2001). It can be shown by substituting Eq. (3) into Eq. (7) that
the τ(f)c can be calculated through the following system of equations:

τcfð Þ ¼ cosθ ln adþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
adð Þ2 þ aþ 1

q
 �
; ð20Þ

where

a ¼ 1
2

es;roughf ;Vð Þ −es;roughf ;Hð Þ
MPDI fð Þ

−es;roughf ;Vð Þ −es;roughf ;Hð Þ

2
4

3
5

d ¼ ω fð Þ

2 1−ω fð Þ
� � :

The LPRM operates by first computing τ(f)c for a given soil moisture
using Eq. (20) (atmospheric effects not included in this step). Then,
this value of τ(f)c is used in Eq. (3) to compute TB(f,p)

l as discussed above.
The atmospheric contribution required for Eq. (2) in order to

estimate TB(f,p)
t is determined using the model of Pellarin et al. (2003):

Ta ↑≈↓ð Þ
B f ;pð Þ ¼ Ta 1−e −τaf ;pð Þ= cosθ½ �� �

21

Tsky↓
B f ;pð Þ ¼ Tskye −τaf ;pð Þ= cosθ½ �; where Tsky ¼ 2:7 K: ð22Þ

This approach assumes that the up- and down-welling atmospheric
contributions are approximately equal and introduces two new
unknowns: equivalent atmospheric temperature (Ta) and atmospheric
optical thickness (τ(f,p)a ), both of which are functions of altitude and air
temperature. In the LPRM, Ta is expressed through a regression relation-
ship as a function of Ts, while τ(f,p)a is assigned a globally and temporally
fixed best estimate value of 0.011 determined from the literature
(Colwell et al.,1983). This two-step cycle is repeated varying the soil

http://www.ngdc.noaa.gov/ecosys/cdroms/reynolds/reynolds/reynolds.htm)
http://www.ngdc.noaa.gov/ecosys/cdroms/reynolds/reynolds/reynolds.htm)
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moisture to find the value of soil moisture thatminimizes the difference
between the computed and observed TB(f,p)

t .
The publicly distributed LPRM product is a composite C-/X-band

product designed to optimize soil moisture retrieval over RFI affected
areas (http://gcmd.nasa.gov/records/GCMD_GES_DISC_LPRM_AMSRE_
SOILM2_V001.html). The approach performs the retrievals separately
for the C- and X-channels by using the L2A NASA brightness tempera-
ture data and varying the frequency dependent parameters (i.e. rough-
ness parameters, single scattering albedo) according to the channel that
is used. Retrievals are stored separately at the orbital footprint resolu-
tion. Whether or not the C- or X-band retrieval is used in the publically
distributed gridded global product is determined based on the presence
of RFI contamination.

3.4. UMT

UMT is also a multi-parameter retrieval model that combines two
sub-algorithms: (Algorithm 1) a geophysical retrieval model that de-
rives effective surface air temperature (Teffective), fraction of open water
(wf), total vertical water vapor content of the atmosphere (V), and veg-
etation transmissivity (Γ(f)c ) and (Algorithm 2) a soil moisture retrieval
model. The UMT flowchart shown in Fig. 2 summarizes only the soil
moisture component (Algorithm 2). Note that (Algorithm 1) the geo-
physical retrievalmodel uses a simplified RTE solution derived by ignor-
ing the surface reflection terms in both Eqs. (2) and (3) and utilizes an
iterative optimization procedure, while (Algorithm 2) the soil moisture
algorithm uses the full quadratic τ–ω model (Eq. 3). As with the NPD
and the LPRM algorithms, UMT assumes that the single scattering albe-
do, optical depth and atmospheric transmissivity are not polarization
dependent.

UMT models the composite land surface emissivity (e(f,p)composite) as a
weighted combination of the openwater and land only contribution ac-
cording to

ecomposite
f ;pð Þ ¼ wf � ewf ;pð Þ þ 1−wfð Þ � el f ;pð Þ: ð23Þ

The resulting simplified versions of Eqs. (2) and (3) generated by
ignoring the surface reflection term (1 − e(f,p)

rough) that are used by
(Algorithm 1) the geophysical retrieval model are given in Eqs. (24)
and (25), respectively.

el f ;pð Þ ¼ esf ;pð ÞΓ
c
fð Þ þ 1−ω fð Þ

� �
1−Γcfð Þ
� �

ð24Þ

and

Tl
B f ;pð Þ ¼ Ts Γafð Þe

composite
f ;pð Þ þ 1−Γafð Þ

� � Ta

Ts


 �
: ð25Þ

The geophysical parameters necessary to solve Eqs. (23)–(25) are
estimated using multiple frequencies (H- and V-polarized 18.7 GHz
and 23.8 GHz brightness temperature data) and several microwave in-
dices, including the Microwave Atmospheric Water Vapor Index
(MAWVI(f)), the Frequency index (FI(f, h)), and the Polarization Ratio
(PR(f)) defined as follows:

MAWVI 18H;V ;23H;Vð Þ ¼ Tt
B 23;Vð Þ−Tt

B 23;Hð Þ
h i

= Tt
B 18;Vð Þ−Tt

B 18;Hð Þ
h i

ð26aÞ

FI 18H;23Hð Þ ¼ Tt
B 23;Hð Þ

h i
= Tt

B 18;Hð Þ
h i

ð26bÞ

PR 18H;Vð Þ ¼ Tt
B 18;Hð Þ

h i
= Tt

B 18;Vð Þ
h i

ð26cÞ

V is determined using the MAWVI(f) index and some additional pre-
defined frequency specific parameters describing the oxygen and
water vapor absorption properties [see Table II of Jones et al. (2010)].
Γ(f)a used in the computation of the effective temperature (Eq. 25) can
be expressed as a function of the integrated atmospheric water vapor.
The simplified RTE model given in Eqs. (23)–(25) is substituted into
the PR(f) and the FI(f, h) expressions and then inverted to estimate wf
and Γ(f)c , respectively. It is assumed that the cloud liquid water effects
at these higher frequencies areminimal and that the single scattering al-
bedo and transmissivity are polarization independent. The exact formu-
lations for wf, V and Γ(f)c can be found in Jones et al. (2010) and are not
included in this paper. It should also be noted that the effective temper-
ature is estimated as part of the RTE-based solution.

The Γ(f)c derived from the geophysical retrievalmodel and the τ(f)c used
in the soil moisture algorithm differ: as noted earlier, the soil moisture
retrieval algorithm (i.e. Algorithm 2) uses the complete τ − ω model,
while (Algorithm 1) uses a simplified version developed under the as-
sumption of no surface reflection. Thus, the τ(f)c used for the computation
of the SM values is estimated by inverting the land–water emissivity
slope index (α(f)), given in Eq. (27), in terms of the τ–ω model (Eq. 3).

α fð Þ ¼ ecomposite
f ;Vð Þ −ewf ;Vð Þ

� �
= ecomposite

f ;Hð Þ −ewf ;Hð Þ
� �

; ð27Þ

where e(f,p)w is considered constant and the effective composite emissivity
is estimated using Eq. (23) (the atmospheric effect is accounted for
through the Γ(f)α term). The resulting formulation for τ(f)c is given in
Eq. (28).

τcfð Þ ¼ − log
−B−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2−4AC

p

2A

" #
; ð28Þ

where

A ¼ 1−ω fð Þ
� �

Rs#
f ;Vð Þ−α fð ÞR

s#
f ;Hð Þ

� 

B ¼ α fð Þe
s#
f ;Hð Þ−es#f ;Vð Þ þ 1−ω fð Þ

� �
α fð ÞR

s#
f ;Hð Þ−Rs#

f ;Vð Þ þ 1−α fð Þ

� 

C ¼ 1−ω fð Þ
� �

α fð Þ−1
� �

þ ew#f ;Vð Þ−α fð Þe
w#
f ;Hð Þ;

where # indicates predefined values for dry bare soil emissivity (e(f,p)s# ,
where R(f,p)

s# = 1 − R(f,p)
s# ) and open water emissivity (e(f,p)w# ). ω(f) is

fixed to 0.06; see Table II of Jones et al. (2010).
As described previously for the NPD algorithm increasing roughness

and vegetation can have similar effects on the observed microwave
emission. Since α(f) was estimated using the observed TB(f,p)

t , the
resulting τ(f)c incorporates roughness effects. This is also true for the
LPRM τ(f)c approach. Thus, unlike the previous approaches, where the
roughness effect was estimated by using a separate roughness correc-
tion step, the UMT approach has a single correction step that incorpo-
rates both vegetation and roughness, which is accomplished through
the α(f) derived vegetation parameter.

The soil emissivity e(f,p)
s,smooth is estimated by inverting the τ–ω model

as shown below.

es;smooth
f ;pð Þ ¼ el f ;pð Þ−Ae −τc fð Þ= cosθ½ �−A

h i
= e −τc fð Þ= cosθ½ � 1−Að Þ
h i

; ð29Þ

where

A ¼ 1−ω fð Þ
� �

1−e −τc fð Þ= cosθ½ �� �

and

el f ;pð Þ ¼
Tt
B f ;pð Þ

Teffective
−wf � ew#f ;pð Þ

 !
= 1−wfð Þ:

http://gcmd.nasa.gov/records/GCMD_GES_DISC_LPRM_AMSRE_SOILM2_V001.html)
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Finally, SM is estimated utilizing a theoretical SM− e(f,p)
s,smooth polyno-

mial model based on the Dobson dielectric model for loamy soils.
The current version of the UMT code ingests the 25 km EASE grid

brightness temperature data provided through NSIDC and all products
generated by the algorithm are publicly available (http://nsidc.org/
data/nsidc-0451.html).

3.5. HA-ANN

HA-ANNmakes use of the Artificial Neural Network (ANN) training
technique to perform SM retrieval through a statistical inversion of
the τ–ω model. There are several additional features that differentiate
HA-ANN from the rest of the approaches discussed in this paper: the
algorithm incorporates a disaggregation step (the final soil moisture
product is provided at finer resolution as compared to the standard
25 km grid), the algorithm was originally set up to ingest JAXA bright-
ness temperature estimates, and the soil moisture estimation is based
only on vertically polarized C-band data, which is different than the
setup employed by the NPD algorithm. Therefore, the approach will
not be included in the comparative overview presented later in this
paper. We have included this algorithm to be comprehensive based
upon the restrictions we mentioned earlier on algorithms; however,
only a brief discussion of the major components is provided.

Essentially ANN can be regarded as a complex and sophisticated
classification scheme (Atkinson and Tatnall, 1997; Mas and Flores,
2008). As with the traditional techniques (supervised, fuzzy, maximum
likelihood, etc.), ANN requires a priori knowledge and reasonable phys-
ical constraints, however, because it does not rely on any assumptions it
allows the use of different data types and adequately represents non-
linear relationships (Atkinson and Tatnall, 1997; Hornik et al., 1989;
Lek et al., 1996; Mas and Flores, 2008). ANN can be used for inverting
complex models such as RTE, without the constraints imposed by
many simplified inversion algorithms, provided that the training pro-
cess is performed correctly.

Prior to executing the ANN component of the algorithm, all bright-
ness temperature data necessary for the algorithm are disaggregated
to the spatial resolution of the AMSR-E Ka-band (~10 km × 10 km)
using the Smoothing Filter-based Intensity Modulation (SFIM) tech-
nique described in Santi (2010). Spatial enhancement is done by utiliz-
ing a Ka-band ratio factor computed as

TOrg
B Ka;pð Þ

h i
= TUp−scaled

B Ka;pð Þ
h i

; ð30Þ

where TB(Ka,p)
Org represents the TB value obtained at the original Ka-band

resolution, while TB(p,Ka)
Up ‐ scaled is an up-scaled TB value representative of

the lower frequency footprint.
Inputs required by the HA-ANN ANN component include ANN spe-

cific configuration files, V-polarized C- and Ka-band observations and
two MPDI(f) indices developed using X- and Ku-band brightness tem-
perature data, respectively. The ANN configuration files (one for each
overpass) are generated by the training process, which is perhaps the
most important step in the implementation of the algorithm. These
files contain the architecture of the already trained ANNs. The training
process and the definition of the ANN configuration files are carried
out separately from the online process, before the application of the al-
gorithm. However, the ANN configuration can be updated in order to
improve the retrieval accuracy by repeating the training with a new
dataset. The training process is based, in this case, on both simulated
data (using the τ–ω model) and experimental measurements [derived
from the existing JAXA TB(f,p)

t archive (2003–2004), which contains
AMSR-E measured TB and ground measurements of SM acquired over
two experimental watersheds located in Mongolia and Australia]. The
experimental data were also used for deriving the TB simulations, in
order to keep the consistency between simulated and observed TB. On
the other hand, RTE model simulations provide a sufficient sampling
size for the training step and provided a variety of surface conditions
for the training process.

Aswith the rest of the algorithms,HA-ANNexcludes RFI contaminat-
ed pixels and does not perform retrievals over snow covered areas or
under conditions of frozen soils and dense vegetation. The detection of
densely vegetated areas and the evaluation of the effect of light vegeta-
tion on the SM retrieval are performed usingMPDI computed using 10.7
and 18.7 GHz data. MPDI sensitivity to varying vegetation was tested
over a site located in Africa (0°–20°N,16°–17°E).

A more detailed description of the approach and examples of the
output products can be found in Santi et al. (2012).

4. Synopsis

Before inter-comparing the theoretical background of the individual
algorithms' components it is helpful to demonstrate the variability in
the final soil moisture products developed by these approaches Spatial
maps of some basic descriptive statistics are shown in Fig. 3. These are
based on 8 years of data starting with 2003. The STDEV illustrate the
variability in terms of range of soil moisture. The resulting maps clearly
illustrate the large differences that can occur between the alternative
AMSR-E products. The algorithm specific range values, shown in the
last row of Fig. 3, were computed excluding the upper and lower 2.5
percentiles, which was done to avoid outliers. Overall, all products
show reasonable spatial variability, however, the patterns do not always
match. This discrepancy is most evident over areas that are character-
ized with less “homogenous” ground conditions and more profound
seasonality such as the Northern latitudes Europe. As stated previously,
the goal of including this analysis is not to compare or assess the algo-
rithm performance, but to demonstrate the difference in the soil mois-
ture products despite the common theoretical background. These
results will also aid us in the interpretation of the individual approaches
and their assumptions aswell as help us to identify the algorithms' com-
ponents that are most likely to impact the observed difference in
resulting range of soil moisture.

Section 3 described each algorithm separately and linked the indi-
vidual solutions to the RTE presented in Eqs. (2) and (3). In an effort
to solve these equations each algorithm goes through several major
steps, including selection of modeling approach (Fig. 2). Then in order
to reduce the dimensionality of unknown parameters certain assump-
tions are made, which leads to simplification of these main equations
(Table 4). Lastly, the simplified equations are parameterized using
both fixed and dynamic parameterization approaches that allow
accounting for the spatial and temporal variability in certain parameters
such as vegetation and effective temperature (Table 3 and 5).

4.1. Modeling approach

Fig. 2 shows how each algorithm implements a slightly different
modeling approach (NPD-empirical implementation of a forward-
based model, SCA-inverse, LPMR-forward, UMT-combined). A few
major differences in terms of RTE mode implementation should be
noted. Some of the geophysical parameters in the forward-based
models such as LPRM and UMT (geophysical retrieval model) are deter-
mined simultaneously, while the inverse-based model, SCA, requires
that all parameters are known a priori. If the parameters are properly
accounted for and are comparable between the approaches, solving
the RTE in an inverse as opposed to a forward mode should produce
similar results. That is to say the modeling approach alone is not
expected to generate major differences in retrievals.

4.2. Assumptions

Overall, the assumptions employed by the algorithms can be
grouped in 3 major categories: canopy (ω(f,p) = 0, ω(f,H) = ω(f,V),τc

(f,H)

= τc
(f,H)), temperature (Tc≅ Ts) and atmosphere (TB(f,p)t = TB(f,p)

l ) related

http://nsidc.org/data/nsidc-0451.html)
http://nsidc.org/data/nsidc-0451.html)


Fig. 3.Basic descriptive statistics of the four soilmoisture products discussed in the paper. Statisticswere calculated for the2003–2010 time period. TheRANGEwas computed byexcluding
the upper and lower 2.5 percentiles to avoid outliers. Dark red color indicates areas, where the RANGE values are below0.05m3/m3, and the STDEV values are below0.02m3/m3, while the
dark blue is associated with areas, where the RANGE values are above 0.45 m3/m3, and the STDEV values are above 0.18 m3/m3. The range of soil moisture captured by each product is
associated with the temporal variability of each product.
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(Table 4). The UMT and NPD algorithms introduce a few additional and
not so common assumptions such as minimal impact of the surface re-
flectance term in Eq. (2) and separable SM and vegetation dependences
in theMPDI, respectively. The direct effect of these assumptions in terms
of solving Eqs. (2) and (3) is shown in Table 4. Nevertheless, in terms of
retrieval accuracy, as discussed in Sections 2 and 3, the overall impact of
these assumptions on the final estimates is considered negligible at the
AMSR-E satellite footprint spatial scale and at themicrowave frequency
range used for soil moisture monitoring (i.e. f ≤ 11 GHz). Thus, it
follows that the differences observed in the final retrievals would be
caused by the geophysical parameterization.

4.3. Parameterization

The key differences between the algorithms related to the parame-
terization modules are summarized in Table 5. Each component includ-
ed in this table will be discussed separately.

4.4. Atmospheric effects

The most noticeable difference in Table 4, which shows the algo-
rithm specific RTE, is related to Eq. (2) and the way how each approach
accounts for the atmospheric effects. As we can see from column 3 of
Table 5 the atmospheric contribution is modeled in one of three ways:
(1) assume no atmospheric contribution; (2) assume a constant value;
or (3) use a radiative transfer-based solution (Pellarin et al., 2003).
The UMT approach offers a variation of these by expressing τ(f)a as a
function of the total vertical water vapor content of the atmosphere
(V) (Jones et al., 2010). However, the UMT atmospheric parameteriza-
tion approach is implemented only in the geophysical retrieval model,
which provides the effective temperature and water fraction estimates
ingested by the soil moisture algorithm. In the UMT soil moisture re-
trieval model the X-band acquired data are corrected only for the im-
pact of oxygen absorption. This correction is spatially and temporally
invariable and has minimal impact on the observed radiation at C- and
X-frequencies.

When treated as a constant (i.e. SCA), the typical value assumed for
the combined atmospheric and sky radiation is ~3 K. The main differ-
ence between (1)–(2) and (3) is that the RTE modeling allows to ac-
count for the spatial and temporal variability in the atmospheric
contribution. To explore how different the estimated atmospheric con-
tribution is as compared to assuming 0 K and ~3 Kwe applied themodel
of Pellarin et al. (2003) using the LPRMmodel. Several different scenar-
ios were run in order to explore the sensitivity of the atmospheric TB to
the ground surface conditions by varying the soil texture, Ts, and SM.
Each scenario was run for the full transmissivity range of 0 to 1 (plotted
on the x-axis). Results are shown in Fig. 4.

A few features of Fig. 4 stand out. First, Ts and soil texture have rela-
tively small impacts on the estimated atmospheric TB as compared to
the variability in soil moisture and vegetation conditions. At first glance
it appears that adopting a fixed value would result in over- or under-
correction depending on canopy density and soil wetness. Making the
assumption that no atmospheric correction is required may lead to
overestimation of Tl. However, some additional details need to be con-
sidered, such as the fact that over densely vegetated areas soil moisture
retrieval is not attempted (i.e. 0 b Γ(f)c b 0.25 at θ = 55° and τ(f)c = 0.8,
where Γ(f)c = exp(−τ(f)c /cos θ); 0.8 is LPRMdense vegetation threshold),
which will reduce the adjustment range. For average soil moisture con-
ditions (i.e. 0.1 to 0.3m3/m3) TBt − TB

l ranges between ~0.5K over dense-
ly vegetated areas (at τ(f)c = 0.8) and ~4 K over bare surface conditions
(computed as an average value of the 0.1, 0.2 and 0.3 soil moisture
curves), which is not very different compared to making no correction
or using a 3 K fixed value.

A more important question is what would be the impact of this
change on the estimated soilmoisture retrieval. Soilmoisture sensitivity
(SSM) to change in TB, where SSM=ΔTB/ΔSM, is dependent on numerous
parameters, including moisture content, roughness, and vegetation
density as well as other factors. Based on published data, SSM can vary
from 2 K to 5 K per 0.01 m3/m3 at L-band (Schmugge, 1980; Ulaby
et al., 1986); SSM is expected to be slightly lower at X-band as TB sensi-
tivity to SM generally decreases with an increase in frequency, see
Schmugge (1980).

Consequently, this analysis shows that the assumption of no or
minimal atmospheric contribution is a reasonable simplification at
f ≤ 11GHz. However, this may not be a valid assumption when using
higher frequencies for the estimation of the ancillary land surface pa-
rameters. Our analyses indicated that the atmospheric correction can-
not explain the reduced sensitivity of the NPD algorithm or the
observed differences between the retrievals, and it is not likely that it
will help improve the range of the retrieved SM values.
4.5. Effective temperature

The soil moisture algorithms selected here estimate the effective
temperature in one of two general ways (1) using linear regression-
based techniques or (2) by inverting the RTE model using higher
frequency AMSR-E channels. In the first T s approach, used by SCA and
LPRM, regression coefficients are derived using a limited station data
base, which may contribute to spatial representativeness associated
errors. Furthermore, the regression based T s estimation is typically
done using V-pol. 36.5 GHz brightness temperature observations,
while the RTE-based UMT approach uses V-pol. 23.8 GHz brightness
temperature observations. Both Ts approaches should provide compara-
ble estimates of T s in terms of magnitude and range. However, as the
23.8 GHz frequency is closest to the lowest water vapor absorption
line (22.235 GHz), it is likely that the Ts contribution is smaller in the
23.8 GHz channel as it is sensing the lower atmosphere. Therefore, it is
expected that the atmospheric effects will be lower at 36.5 GHz
(Njoku et al., 2004; Qiu et al., 2007; Ulaby et al., 1981). Furthermore,
in addition to the frequency difference, the site specific nature of the re-
gression approach as well as the extra water fraction correction
employed in the RTE approach are likely to produce differences in the
Ts estimates ingested by the individual SM algorithms. It is also reason-
able to expect that the effective temperature inputs used by SCA and



Fig. 4. Simulated total atmospheric contribution computed using the LPRM set up, where the up-/down-welling and cosmic radiation components are estimated following Pellarin et al.
(2003). Simulations were carried out by fixing the soil properties, soil effective temperature and soil moisture.
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LPRM are very similar since they both employ similar SM regression-
based models to estimate the effective temperature. However, as seen
in Fig. 3 SCA and UMT produce similar soil moisture results, while SCA
and LPRM differ significantly in terms of the range of soil moisture. Un-
certainties in Ts can contribute to errors in the final soil moisture re-
trievals (Holmes et al., 2012; Parinussa et al., 2011); however,
assuming that the effect of openwater bodies or standingwater is prop-
erly accounted for, it is not likely that Ts can explain the differences in
the range of soil moisture produced by the algorithms.

4.6. Vegetation parameterization & roughness effects

As explained by Njoku and Chan (2006), vegetation and surface
roughness have similar effects on the observed brightness temperature
(increases TB and decreases the sensitivity to the surface emissivity to
soil moisture), which makes it difficult to separate their impact. This
statement applies to all the RTE-based vegetation parameterization
approaches, such as those employed by NPD, LPRM and UMT.

The vegetation and roughness effects are described in the RTE
through four parameters h(f)G, Q (f), τ(f)c and ω(f), where the impact of
Q (f) and ω(f) is linear, while h( f) and τ(f)c are exponentially related to
the microwave signal. The general sensitivity of the RTE to each of
these parameters individually is illustrated in Fig. 5 plot [a]. For exam-
ple, ‘bare/smooth’ (blue line) shows the response over smooth bare
soil conditions; the dark brown line in plot [a] shows the response
from a bare rough surface, where the roughness parameterization is
done by defining the h( f) parameter only, and so on. The synthetic
runs shown in plot [a] of this figure were generated by varying only
one parameter at a time and setting the remaining parameters to 0.
The two options for G discussed earlier include G = 1 and G = cos 2θ.
G has a direct impact on ω(f). When expressed as a function of θ, G re-
duces the magnitude of h(f) and therefore its impact on the sensitivity
of the emissivity to SM. The difference between these two cases is
small and becomes less important (and negligible) as τ(f)c increase. It
can also be seen that parameterization of Q (f) and ω(f) with any values
different than 0 does not impact the sensitivity of the e(10.7,H)–SM curve,
respectively. This confirms the previous statement that the assumption
ofω(f)=0 is not essential and suggests that erroneous parameterization
of Q(f) and ω(f) may lead to errors in the final estimates, however, their
impact on the soil moisture range is negligible (VanDeGriend andOwe,
1994). Most importantly, Fig. 5 plot [a] shows that among all 4 parame-
ters listed in the beginning of this paragraph τ(f)c is the single most im-
portant parameter that can cause a significant reduction in the
sensitivity of the e(10.7, H)–SM curve. As discussed in Section 3, τ(f)c is
also the parameter that is parameterized using very different ap-
proaches by each algorithm (see Table 5).

At the satellite spatial footprint scale, however, themicrowave signal
emitted from a naturally varying ground surface can rarely be described
by using only a single parameter. The emissivity response is the result of
the complex interaction of h(f)G, Q(f), τ(f)c and ω(f). Even though h(f)G
alone appears to have minimal impact, when combined together with
the vegetation effects, it can further reduce the sensitivity of the
estimated emissivity to soil moisture. Several general scenarios are
illustrated in Fig. 5 plots [b]. Another observation that can be made
from Fig. 5 plots [b] is that the sensitivity to soil moisture is lowest
when defining all four vegetation and roughness related parameters
(h(f)G(G = 1.0), Q(f), τ(f)c and ω(f)), which is an anticipated result and
in line with the microwave theory. The only approach that parameter-
izes for all vegetation and roughness parameters is LPRM.

NPD and UMT assume that τ(f)c also incorporates roughness effects
(τ(f)c⁎ ; note that the NPD τ(f)c⁎ corresponds to the βαg expression given
in Eq. 16), which are parameterized independently by SCA and LPRM.
The validity of the assumption that τ(f)c and τ(f)c⁎ are comparable was ex-
plored and the results are displayed in Fig. 5 plot [c]. This appears to be a
reasonable simplification, whichmay lead to some unaccounted residu-
al roughness effects in the smooth emissivity response. The magnitude
of this roughness related error isminimal and is a function of vegetation,
soil moisture and h(f).

It was demonstrated that the impact of ω(f) is minimal (Fig. 5 plot
[a]) and that τ( f)c ≈ τ( f)c⁎ , which leads to the conclusion that the SCA
and UMT modeled emissivity from a vegetated rough surface will be
similar. It also means that they will be different as compared to the cor-
responding modeled estimate of LPRM. The NPD modeled response in-
corporates the combined effect of Q( f) and τ( f)c⁎ , suggesting different
sensitivity than UMT and SCA. To some degree, this is counterintuitive
as NPD and SCA employ similar assumptions and are based on the
same simplified τ–ω model. In addition, as clarified by Njoku and
Chan, 2006, the NPD model is calibrated to represent minimal rough-
ness conditions, which are incorporated through the Q ( f) factor (see
Eq. 12).

The algorithm specific responses, generated using the exact values
for h( f)G, Q ( f), τ( f)c and ω(f) as defined by the developers and shown
in Fig. 5 plot [d], confirm the above discussion. Note that plotted here
is the A* function, where A * (10.7,SM) = [e(10.7,V) − e(10.7,H)]/[e(10.7,V) +
e(10.7,H)] and e(10.7, p) represents themodeled emissivity from a vegetat-
ed rough surface (following the sensitivity example shown in Fig. 4 in
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Fig. 5. RTE sensitivity analysis. All runs were done using theWang and Schmugge dielectric mixing model applied for silt loam soils and using a constant effective temperature of 20 °C.
Unless specified otherwise in the plot, with the exception of plot [d], runs were done using h= 0.14 and Q= 0.156 (average between the actual values adopted by the individual algo-
rithms). The algorithms specific simulations, shown in plot [d], were done assuming fixed vegetation conditions (τ = 0.15) and using the parameters listed in Table 5.
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Njoku and Chan, 2006). Fig. 5 plot [d] shows that NPD, SCA, LPRM and
UMT have different sensitivities. These results would also suggest that
given the same τ( f)c parameterization, LPRM would have narrower
range of soil moisture than SCA or UMT, which as seen from Fig. 3 is
not the case. If we assume ω(f) = 0 and Q(f) = 0, the LPRM emissivity
approximation for smooth bare soil becomes equivalent to the SCA
solution (Eq. 18). The vegetation–roughness exponential correction

term for these two algorithms equals e
h fð ÞGþ2τc fð Þ

h i
. The corresponding

functions for UMT and NPD equal e
2τc fð Þ

h i
(Eq. 29, ω( f) = 0) and

e
b1þb2 ln MPDIdry

fð Þ

h ih i
, respectively. Inter-comparing the full expression

rather than focusing on τ(f)c alone allows examining the combined effect
of h(f)G and τ(f)c . The algorithm specific combined roughness–vegetation
correction representations are shown in Fig. 6. All 4 maps display ex-
pected variability at global scale. However, the level of detail captured
by each approach is slightly different. The few mountain areas present
in the middle of Sahara and the Amazon River evident in the NPD,
LPRM, and UMT maps, for example, are not distinguishable in the SCA
map. The SCA τ(f)c parameterization is done using 10-day climatology,
which can explain the different level of detail present in the SCA map.
Agreement between the approaches is lower in the Northern latitudes.
The most noticeable observation evident in this figure is the greater
range of the LPRMexponential term. Even though SCAand LPRMcorrect
in a similar way for the combined h(f)G and τ(f)c effect the absolute value
of the corresponding exponential terms differs significantly between
these two approaches. This difference is primarily controlled by τ(f)c .

The analysis indicates that the characteristic soil moisture range of
each retrieval algorithm is a function of the combined effect of the
inherent algorithm specific sensitivity (Fig. 5) and the magnitude of
the roughness–vegetation correction (Fig. 6). In the NPD case, the
narrower range of soil moisture can be explained by the inherent min-
imal roughness effect and the fact that the algorithmmodels the current
soilmoisture as a deviation from some base lineminimal vegetation and
soil moisture conditions. As we saw from the sensitivity analysis pre-
sented in Fig. 5 the added roughness effect results in lower sensitivity
as compared to the rest of the approaches. From any of the R(f,p)

s,rough →
R(f,p)
s,smooth equations, it is easy to see that increased surface roughness

would manifest as an increased soil emissivity and, as explained by
Van De Griend and Owe (1994), this would result in a reduced wet–
dry range in emissivity. Even though LPRM's sensitivity appears to be
similar, its combined roughness–vegetation correction component is
much higher leading to a different corrected emissivity and sensitivity
of the e(f,p)

s,smooth to SM.
4.7. Detection of standing water

One additional factor that can alter the lower and upper end of the
soil moisture range has to be considered. This is the impact of open
water bodies and standing water. Algorithms, with the exception of
UMT, screen for such unfavorable ground conditions using static ancil-
lary maps, which only provide information on permanent features.
Thus, it is very possible that areas experiencing temporary or short-
term flooding will not be identified when using these databases. Stand-
ing water would result in underestimation of the effective soil emissiv-
ity, which in turn leads to overestimation of the soil moisture that
produces a higher upper limit and larger range of soil moisture. Note
that the presence of open water would contribute towards inaccuracies
in both the soil emissivity and the effective temperature in approaches,
where the latter is estimated using the higher frequencies of AMSR-E. If
the observed difference in RANGE between LPRM and SCA and UMT
were to be due to inaccurate screening for standing water, then these
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Fig. 6. An example of the vegetation–roughness correction term used by the individual algorithm, where each plot represents a monthly composite generated using data fromMay 2007.
SCA approximates the vegetation contribution by utilizing an ancillary based approach, which relies onmonthly NDVI climatology, while NPD, LPRM and UMT employ RTEmodeling and
microwave-based indices. Approaches showexpected and comparable variability at global scale. The green spots located in themiddle of Sahara, clearly evident in theNPD, LPRMandUMT
maps, are major mountain features [Ahaggar, Tassili N'Ajjer (Algeria), Tibesti (Chad), and Aïr Mountains (Niger)]. These areas characterize with slightly wetter climate compared to the
surrounding desert. The SCAmaps display slightly lower level of detail (i.e. Sahara, Amazon River basin), which can be explained by the fact the SCA optical depth estimate is determined
using climatology as opposed to real time data.
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effects would be local and restricted to areas that are likely to experi-
ence occasional flooding. Such regional distributions are not evident in
the RANGE maps (i.e. LPRM).

5. Concluding remarks

As stated in the Introduction, all passivemicrowave soil moisture re-
trieval approaches considered here are based on the same principles.
However, the algorithms differ significantly in twoways: the simplifica-
tions of the RTEmodel employed and the approaches used for geophys-
ical parameterization. It appears that the simplificationof theRTEmodel
based on the assumptions ofω(f) = 0, no atmospheric contribution and
τ(f)c ≈ τ(f)c⁎ is not significant. The more important difference in algorithm
behavior arises from the inherent theoretical model sensitivity given
the algorithm specific parameterization and the exponential correction
component, which accounts for the combined h(f)G and τ(f)c contribu-
tion. The narrower soil moisture range observed in the NPD-based
AMSR-E retrievals is a result of the inherent minimal roughness effect
combinedwith the fact that the algorithmmodels the current soil mois-
ture as a deviation from some base line minimal vegetation and soil
moisture conditions. The temporal dynamics, on the other hand, is de-
termined by the MPDI(f) response (see Eq. 15). Careful examination of
the MPDI(f) response and how it relates to change in soil moisture
conditions has to be conducted in order to determine how the temporal
dynamics of the NPD product can be improved. In addition, several of
the variables and constants used to compute Eqs. (15) and (16) were
derived using a single year of AMSR-E observation (2003). Updating
these parameters using the complete AMSR-E time period, would be a
logical first next step towards enhancing the NPD product.

Although passivemicrowave-based soil moisture retrieval is consid-
ered a mature and reliable approach and the fact that several investiga-
tion have demonstrated the accuracy and sensitivity of some of the
algorithms considered here (De Jeu et al., 2008; Draper et al., 2009;
Jackson et al., 2010), our investigation has shown that each of the avail-
able approaches has shortcomings and inconsistencies:

• The LPRM optimization procedure minimizes the difference between
observed and modeled TB(f,p)

t only for horizontal polarization; from a
theoretical point of view this TB(f,p)t includes information on the atmo-
spheric water state, surface conditions, and soil moisture. Since
MPDI(f) is used to approximate the vegetation effect, it might be
more accurate if MPDI(f) was computed using the atmospherically
corrected brightness temperature estimates and if the minimization
was done simultaneously for both polarizations. It is likely that imple-
mentation of the above recommendationswould require amore com-
plex optimization procedure that is able to minimize multiple
parameters simultaneously and an extra iteration loop to account for
the atmospheric effect.

• SCA requires some ancillary data in order to estimate the vegetation
contribution. Both UMT and NPD perform a double vegetation param-
eterization: UMT derives Γ(f)s separately for the geophysical model and
the soil moisture inversion. Similarly, the vegetation contribution in
the NPD SM approach is done by evaluating the present MPDI( f)
relative to the long term dryMPDI(f) at a single frequency (the opera-
tional vegetation-roughness parameter g is computed using two
frequencies).

Most importantly, the sensitivity analysis presented in this paper
leads towards the following general conclusions:

• Direct interchange of the final retrieved ancillary components is not
recommended. This is especially true for parameters such as τ(f)c ,
which do not have a directly observable geophysical equivalent that
can be used for validation. Cross-comparisons against alternative
vegetation-baseddata sets provide information on their relative perfor-
mance in terms of spatial and temporal variability. However, they can-
not access their accuracy in terms of physical range and absolute value.

• There is no ‘perfect’ parameterization approach. Algorithms are a sys-
temof interconnectedunits,where the retrieval of each geophysical pa-
rameter is done sequentially. This complicates the interchange of
parameterization units between approaches. The RTE-based geophysi-
cal retrieval approaches are only possible if solved in an iterative
optimization framework,whichmakes the solutions not easily transfer-
able (i.e. inverse vs. forward solutions). Most importantly, as it was
demonstrated, all of these parameterization units are complimentary
to one another, which allow compensating for offsets in any of the
units and balancing the system. That is to say that a ‘combined RTE so-
lution’ that includes the ‘best’ features of each algorithm might be the
most desirable and logical approach towards the establishment of the
‘perfect’ soil moisture model. However, it will not be an easily accom-
plishable task.

Theoretically each of the algorithms discussed in our paper can be
applied to any system that operates at f ≤ 11 GHz, including L-band,
which is considered optimal for soil moisture monitoring. Since the
assumptions and simplifications made by the algorithms remain valid
at f ≤ 11 GHz using an alternative frequency (i.e. L-, C- or X-band) will
not have any impact on the algorithms' specific solutions. The inter-
comparisons offered in this paper will hopefully contribute to a better
understating of the theoretical aspects that determine the sensitivity
and overall performance of each algorithm. Such knowledge is essential
as it provides a basis for improvement and can be beneficial for any fu-
ture implementations of the algorithms examined here using alterna-
tive frequency (f ≤ 11 GHz) or observations acquired from a different
microwave system.

To reiterate a statement made earlier, the discussion and analysis
presented in this paper do not reflect on the statistical accuracy of the
available products, we did not perform an evaluation of the accuracy
of the soil moisture retrievals. Goals were to determine the cause(s)
for the different range of the soil moisture estimates and temporal dy-
namics displayed by the alternative approaches and potentially outline
the components from the NPD algorithm that would need to be modi-
fied or improved. In this paper it was assumed that differences caused
by the dielectric mixing model (i.e. Dobson vs. Wang and Schmugge)
and the ancillary static data sets (i.e. soil properties) are minimal as
compared to deviations caused by the algorithm specific RTE parame-
ters. Therefore, an important supplementary analysiswould be to assess
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the total error associated with the assumptions, use of spatially fixed
soil properties, use of static dataset for detection of dynamic variables
such as standing water, etc. Careful assessment of these intrinsic errors
in addition to the relative accuracy of the final products is essential and
would potentially lead to better understanding of the advantages and
shortcomings of the available approaches.
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