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This paper presents a new approach for mapping wetland inundation change using Landsat and LiDAR intensity
data. In this approach, LiDAR data were used to derive highly accurate reference subpixel inundation percentage
(SIP) maps at the 30-m resolution. The reference SIP maps were then used to establish statistical relationships
between SIP and Landsat data. Inundation changes were mapped by applying the derived relationships to
Landsat images acquired in different years. This approach was applied to the upper Choptank River sub-
watershed to map wetland inundation for average (2005 and 2007), dry (2009), and wet (2010) years. The
derived SIP maps revealed large changes in wetland inundation among dry, average, and wet years. Total
areas of near complete inundation (SIP N 75%) and high inundation (SIP between 50% and 75%) in the wet
year of 2010 were about five and three times of those in the dry year of 2009, respectively. The wet year
also had more medium inundated areas (SIP between 25% and 50%) than the average and dry years, but low in-
undated areas (SIP b 25%) did not have any particular trend. Themapped inundation changes were found corre-
lated with local drought conditions and stream flow, with the near complete inundated and highly inundated
areas having the highest correlations. Given the fact that Landsat are globally available and LiDAR data are
becoming increasingly more affordable and available, the approach developed in this study has potential for
deriving historical inundation changes over the past decades and for monitoring ongoing changes over much
larger areas than demonstrated in this study.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Wetlands provide a broad range of ecosystem services, including
flood control, sediment andnutrient retention and export,water purifica-
tion, groundwater replenishment, and rich biodiversity (Groot, Stuip,
Finlayson, & Davidson, 2009). The provision of these services is especially
vital in the Chesapeake BayWatershed, which drains to one of the largest
and historically most productive estuaries in the U.S. Effective wetland
conservation and management requires reliable and up-to-date wetland
information. National wetland products have been produced by the U.S.
Fish and Wildlife Service (FWS) National Wetland Inventory (NWI)
(Wilen&Bates, 1995) and theNational Oceanic andAtmospheric Admin-
istration (NOAA) Coastal Change Analysis Program (C-CAP) (Klemas,
Dobson, Ferguson, &Haddad, 1993). The NWI products provide relatively
fine-scale details, but they are often out of date and contain significant er-
rors, especially in difficult-to-map areas like forestedwetlands (Kudray &
Gale, 2000; Stolt & Baker, 1995). C-CAPmaps aremore recent but are less
reliable thanNWI over forestedwetlands. Neither of thesemaps provides
ghts reserved.
adequate information on the temporal dynamics of wetland inundation
and saturation.

Most wetlands in the Mid-Atlantic region have certain levels of
deciduous forest cover (Lang & Kasischke, 2008). Their water levels
can have substantial seasonal variations, primarily in response to
precipitation events and changes in evapotranspiration. Many wetland
areas are inundated or saturated for a relatively short period, usually in
the spring after snowmelt and before leaf-out. Inter-annual deviations
from averageweather conditionsmodify these seasonal hydrologic pat-
terns (Mitsch & Gosselink, 2007; Tiner, 1999), such that area inundated
in the spring can vary considerably during dry andwet years. Such tem-
poral variations may further increase as rising temperatures and more
variable precipitation patterns are predicted for the Chesapeake Bay
region (Fisher, 2000; Moore & Kim, 1995). Because wetland inundation
and saturation are the most important abiotic factors controlling wet-
land extent and function (Nestler & Long, 1997), even small changes
in hydrologic regime may cause substantial changes in ecosystem
characteristics and function (Mitsch & Gosselink, 2007). Therefore,
monitoring the inundation dynamics of wetlands is critically important
for understanding their health and function, and the ecosystem services
they provide.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2013.10.020&domain=pdf
http://dx.doi.org/10.1016/j.rse.2013.10.020
http://dx.doi.org/10.1016/j.rse.2013.10.020
http://www.sciencedirect.com/science/journal/00344257
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Remote sensing provides a major data source for monitoring
wetland dynamics.While imaging radar has been found useful formap-
ping wetland inundation (e.g. Lang & Kasischke, 2008; Lang, Kasischke,
Prince, & Pittman, 2008) and detecting water level change in swamp
forests (Lu et al., 2005), in this study we focus on the usefulness of
Landsat data formonitoring inundation changes over forestedwetlands.
Created by a series of seven Landsat systems (Green, 2006), including
the Landsat Data ContinuityMission (or Landsat 8) thatwas successfully
launched in 2013, the Landsat archive provides a consistent imagery
record of the Earth's surface that extends back to the 1970s (Goward
et al., 2006) and will be continued for the foreseeable future (Loveland
& Dwyer, 2012). Radar cannot provide such a consistent record over
multiple decades. Existing radar data were acquiredwith different wave-
lengths, polarizations, and incidence angle ranges (Lang & Kasischke,
2008), and did not become available until the 1990s (Kramer, 2002).

Landsat data have been used in many wetland studies (e.g. Lunetta
& Balogh, 1999; Thomas, Kingsford, Lu, & Hunter, 2011), including wet-
land classification (e.g. Berberoglu, Yilmaz, & Ozkan, 2004; Castaneda &
Ducrot, 2009) and change detection (e.g. Baker, Lawrence, Montagne,
& Patten, 2007; Kassawmar, Rao, & Abraha, 2011; Nielsen, Prince, &
Koeln, 2008). Comprehensive reviews of remote sensing datasets
and methods for wetland characterization have been provided by
Rundquist, Narumalani, and Narayanan (2001) and Ozesmi and Bauer
(2002). Overall, previous studies have demonstrated the potential of
satellite remote sensing for detecting permanently flooded or intermit-
tently exposed open water surfaces, but many challenges exist, espe-
cially for mapping forested wetlands (Ozesmi & Bauer, 2002). Forested
wetlands in areas of low topographic relief, such as the Coastal Plain
of the Chesapeake Bay Region, are particularly difficult to map, because
the forest canopy often obscures the water beneath the canopy during
the growing season, and trees found in this type of wetland are often
spectrally similar to those found in upland forests (Lang, McCarty,
Oesterling, & Yeo, 2013). Lang and McCarty (2009) demonstrated that
airborne Light Detection And Ranging (LiDAR) intensity data can be
Fig. 1. Location of the upper Cho
used to detect inundation over forested wetlands during the leaf-off
season. Currently, however, routine use of LiDAR data for mapping
wetlands and their dynamics over large areas is not feasible due to
high data cost and limited data availability.

The main purpose of this study was to develop a new approach for
mapping inundation over mostly woody wetland areas using airborne
LiDAR data and Landsat images. In this approach, available airborne
LiDAR data were used to produce high resolution inundation maps
following the method developed by Lang and McCarty (2009). These
maps were overlaid on the 30-m grids defined by the Landsat data to
calculate subpixel inundation percentage (SIP) within each grid cell.
The LiDAR based SIP data were then used to model relationships be-
tween inundation and the spectral data acquired by the Landsat. Inun-
dation maps outside the area covered by available LiDAR data and in
different dates were then derived by applying the developed model to
available Landsat images. We demonstrated the effectiveness of this
approach for mapping wetland inundation and change within the
upper Choptank River sub-watershed over the Delmarva Peninsula,
and evaluated the relationships between the mapped inundation
changes and local drought conditions and stream flow. The developed
approach will be most effective when the LiDAR and Landsat images
are acquired during the leaf-off season. As mentioned earlier, surface
water is often obscured by the forest canopy present during the leaf-
on growing season.

2. Data and methods

2.1. Study area

The study area included a sub-watershed located within the
1756 km2 Choptank River watershed on theDelmarva Peninsula within
the Coastal Plain Physiographic Province of the Chesapeake BayWater-
shed (Fig. 1). This area is referred to as the upper Choptank River sub-
watershed throughout this paper. The Choptank River is a major
ptank River sub-watershed.
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tributary of the Chesapeake Bay, originating in Kent County, Delaware
and flowing southwest toward its outlet near Cambridge, Maryland.
The Choptank River suffers from poor water quality, mainly due to
relatively high levels of nutrients, sediment, and bacteria (McCarty
et al., 2008). The area is relatively flat (maximum elevation b30 m
above sea level) and its land cover is dominated by agriculture
(~60%), with smaller amounts of forest (33%) and urban/suburban
areas (7%) (McCarty et al., 2008). The area is characterized by a temper-
ate, humid climate with an average annual precipitation of 120 cm/yr
(Ator, Denver, Krantz, Newll, & Martucci, 2005). Precipitation is evenly
distributed throughout the year and approximately 50% of annual pre-
cipitation recharges ground water or enters streams via surface flow,
while remaining precipitation is lost to the atmosphere via evapotrans-
piration (Ator et al., 2005).

The upper Choptank River sub-watershed has a significant amount
of forested wetlands. While riparian wetlands and wetland flats are
common, the relatively dense distribution of wetland depressions is
particularly notable. As mentioned earlier, most wetlands in this area
are inundated or saturated for a relatively short period in the spring.
The period of maximum hydrologic expression (i.e., highest groundwa-
ter level andmost area inundated) varies with inter-annual fluctuations
in weather conditions, but typically takes place in or around March/
April when evapotranspiration has been relatively low. Stream flows
are typically high during February through April.

2.2. Data and preprocessing

The inundation mapping approach consisted of two major steps.
The first was to model the statistical relationships between subpixel in-
undation percentage (SIP) and Landsat spectral data using reference
samples. The secondwas to use the derivedmodels to predict SIP in dif-
ferent years and over areas where reference data were not available
(Fig. 2). The primary datasets required for this approach included
airborne LiDAR intensity data and Landsat images (Table 1).

2.2.1. LiDAR data
Two LiDAR datasets were collected for a 33 km2 portion of

the study area (Fig. 1), one on March 27, 2007 and the other on
March 24, 2009. These two years were selected to represent average
(2007) and dry (2009) conditions based on the NOAA Palmer Z Index
(NOAA National Climate Data Center, http://cdo.ncdc.noaa.gov). As
discussed in Section 2.1, end of March is the approximate average
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Fig. 2. Flow chart of the approach for developing and validating subpixel inu
period of maximum hydrologic expression when annual inundation
levels are typically at their highest. No precipitation occurred during
the week before the acquisition of each dataset.

Both LiDAR datasets were collected using an Optech ALTM 3100
sensor with a wavelength of 1064 nm. Their geolocation accuracies
were evaluated using over 100 precision GPS points collected in areas
of stable elevation (e.g., road intersections) using a Trimble RTK 4700
GPS/base station combination and a surveyed benchmark provided by
the Maryland State Highway Administration. The 2007 dataset was
collected with a scan angle of +/−20° at a height of 610 m above the
Earth's surface with a pulse rate of 100,000 Hz and a scan frequency of
50 Hz. The 2009 dataset was collected at about the same height, but
with a scan angle of +/−10°, a pulse rate of 100,000 Hz, and scan
frequency of 70 Hz. Bare earth pointswere classified by the data provid-
er using the Terrascan v7.0 software. The resultant data had vertical
errors of ≤0.15 m. The average point densities were 2.5 pts/m2 (0.40 m
post spacing) and 11 pts/m2 (0.09 m post spacing) in the 2007 and
2009 datasets, respectively. More detailed description of these two
datasets has been provided by Lang and McCarty (2009).

2.2.2. Landsat images
The Landsat images were selected to have minimum or no cloud

cover over the study area and have acquisition dates as close to those
of the LiDAR datasets as possible (Table 1). To evaluate the applicability
of the developed approach to other years, two additional Landsat im-
ages were selected, one acquired on February 18, 2005 and the other
on March 21, 2010, representing average (2005) and wet (2010) years.

The selected images were downloaded from the GLOVIS website of
theUS Geological Survey (http://glovis.usgs.gov) as level 1T (L1T) prod-
ucts. L1T Landsat images have been calibrated using best available ra-
diometric calibration methods (Chander, Markham, & Helder, 2009)
and typically have geolocation accuracy better than 30 m. Therefore,
no further geometric correction was performed for the selected images.
Radiometrically, the selected images were first converted to top-of-
atmosphere (TOA) reflectance, and then atmospherically corrected to
produce surface reflectance (SR) using the Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS) (Masek et al., 2006).
The LEDAPS atmospheric correction algorithm adjusts for gaseous
absorption, Rayleigh scattering, and Mie (aerosol) scattering using the
MODIS/6S radiative transfer model (Vermote et al., 1997). It produces
surface reflectance values that are close to in situ reflectance measure-
ments (Gitelson et al., 2012), and are consistentwithMODIS reflectance
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Table 1
Acquisition dates or date ranges (yyyy/mm/dd) of the datasets used in this study.

Year Lidar data Landsat
image

Palmer Z-score index Water discharge

2005 2005/02/18 2005/01/01–2005/02/28 2005/02/15–2005/02/18
2007 2007/03/27 2007/03/29 2007/02/01–2007/03/31 2007/02/26–2007/03/29
2009 2009/03/24 2009/03/18 2009/02/01–2009/03/31 2009/02/15–2009/03/18
2010 2010/03/21 2010/02/01–2010/03/31 2010/02/18–2010/03/21

Table 3
Spectral indices that were used together with the 6 Landsat spectral bands and tasseled
cap brightness (TCB), greenness (TCG) and wetness (TCW) in inundation modeling.

Spectral Index Formula Reference

NDVI (Band 4 − Band 3) /
(Band 4 + Band 3)

Tucker (1979)

NDWI-1 (Band 4 − Band 5) /
(Band 4 + Band 5)

Gao (1996)

NDWI-2 (Band 3 − Band 5) /
(Band 3 + Band 5)

Rogers and Kearney (2004)

TCWGD TCW − TCG This study
TCA Arctan (TCG / TCB) Powell et al. (2010)
IVR Band 5 / Band 2 Ozesmi and Bauer (2002)
IR (Band 5 − Band 7) /

(Band 5 + Band 7)
Ruan, Feng, and She (2007)

a) Mean LiDAR-SIP vs. Mean Landsat-SIP (2007)
y = 0.0039x2 + 0.344x + 5.6536

R² = 0.98

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

L
an

ds
at

-d
er

iv
ed

 S
IP

 (
%

)

LiDAR-based reference SIP (%) 

30

40

50

60

70

80

90

100

nd
sa

t-
de

ri
ve

d 
SI

P
 (

%
)

b)

234 C. Huang et al. / Remote Sensing of Environment 141 (2014) 231–242
products (Feng et al., 2012, 2013) and reflectance values calculated
using aerosol data available from Aerosol Robotic Network (AERONET)
(Masek et al., 2006).

We noticed some differences between the SR values of water pixels
that had SIP values of 100% in the four Landsat images (Table 2). Such
differences may arise from incomplete atmospheric correction and/or
changes in water turbidity or other factors that affected water reflec-
tance values (Schott, 2007). Although the absolute values of these dif-
ferences were small, they could be significant when compared with
the generally low reflectance values of water. With inundation being
the model target, such differences, which were not related to changes
in inundation level, could hinder the prediction accuracy when a
model derived for one yearwas applied to a different year. Thiswas con-
firmed when a preliminary model developed using the 2007 data was
applied to the 2009 and 2010 Landsat images—inundation was severely
underestimated for those two years. To mitigate this problem, the 2007
image was used as a reference to normalize the 2005, 2009, and 2010
images (target) using a method similar to a dark object subtraction
approach (Chavez, 1996). Specifically, the reflectance values of water
pixels listed in Table 2 were used to calculate differences between
2007 and the other three years. Those differences were then used to
normalize each of the three images such that water pixels that had SIP
values of 100% had roughly the same spectral values in all four years.
Here the 2007 Landsat image was chosen to be the reference because
this image and the 2007 LiDAR based reference inundation dataset
were used to establish the inundation models (see more details in
Section 2.3.2).

The 2007 image and the normalized images for the other three years
were then used to calculate a suite of indices, including tasseled cap
brightness (TCB), greenness (TCG), and wetness (TCW), tasseled cap
wetness-greenness difference (TCWGD), tasseled cap angle (TCA), the
normalized difference vegetation index (NDVI), two forms of the nor-
malized difference wetness index (NDWI), an infrared-visible ratio
(IVR) index, and an infrared ratio (IR) index. These indices had been
found useful for wetland characterization in previous studies
(Table 3). In this study, theywere examined in addition to the 6 original
Landsat bands for wetland inundation modeling. TCB, TCG, and TCW
were calculated following Crist (1985). Equations for calculating the
other indices are provided in Table 3.

2.2.3. Reference inundation data
The LiDAR dataset acquired in each of the two dates was first inter-

polated using an inverse weighted distance (IDW) method to produce
a 1-m gridded intensity image. The intensity image was then filtered
using an enhanced Lee filter (Lee, 1980) five times with gradually
Table 2
Mean reflectance values (%) of collocated water pixels derived using the LEDAPS for the
four images used in this study (B1–B7 refers to Landsat band 1 to band 7). These values
were used to further normalize the 2005, 2009, and 2010 images such that they had the
same mean water reflectance values as the 2007 image.

Year B1 B2 B3 B4 B5 B7

2005 3.76 4.73 3.69 1.92 0.59 0.38
2007 3.68 5.24 3.45 1.79 0.6 0.45
2009 6.42 6.57 4.7 3.7 1.93 1.36
2010 3.94 4.04 2.55 1.84 0.38 0.25
increasing kernel sizes of 3 (twice), 5, 7, and 9 to reduce noise. Thefiltered
intensity image was then used to separate inundated (100% inundated),
transition (partly inundated) and non-inundated (0% inundated) pixels.
Because the LiDAR instrument used in this study operated at a wave-
length (1064 nm) where water has strong absorption, inundated areas
typically appeared very dark in the LiDAR intensity images while areas
not inundatedwere in general bright. Transition areas (partly inundated)
as well as some green vegetation (mostly evergreen forests) were in
between. The threshold values for separating these three classeswere de-
rived based on local knowledge (Lang & McCarty, 2009). The inundation
0
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Fig. 3. The mean SIP values of the initial RT prediction for 2007 were mostly lower than
the mean reference SIP values within 2% bins of the 2007 reference SIP map (a). Most of
these biases were corrected by fitting a 2nd order polynomial function between the
mean reference values and the mean predictions (b). In both figures, the mean prediction
and its standard deviation within each 2% bin are shown in a black dot and a gray bar,
respectively. The solid and dashed lines represent the 1:1 and fitted lines, respectively.



Table 4
Coefficient of determination (R2) of the linear relationship between sub-pixel inundation
percentage (SIP) and Landsat bands and derived indices.

B1 B2 B3 B4 B5 B7 NDVI NDWI-1
0.16 0.18 0.17 0.25 0.32 0.22 0.00 0.00

NDWI-2 TCB TCG TCW TCWGD TCA IVR IR
0.01 0.29 0.07 0.22 0.41 0.00 0.02 0.00

Table 5
Root mean square error (RMSE) and coefficient of determination (R2) of the relationships
between predicted subpixel inundation percentage (SIP) and reference data.

Training data
(11,000 pixels)

Test data
(25,408 pixels)

RMSE (%) R2 RMSE (%) R2

Stepwise linear regression (SLR) 14.07 0.51 14.26 0.52
Regression tree (RT) 10.57 0.72 12.49 0.64
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map derived using the 2007 LiDAR dataset was validated using field
data collected at ~1000 locations along random transects through multi-
ple forested areas, andwas found to have an overall classification accura-
cy of 96.3% (Lang,McDonough,McCarty, Oesterling, &Wilen, 2012).More
(a) SIP map produced using the initial RT model (b
fu

(c) Reference SIP map derived using the 2007
LiDAR dataset

(

(e) Zoom-in window 1 Zoom-in window 2

Fig. 4. Comparison of the initial RT predictions for 2007 (a), the mean corrected SIP map (b), an
associated with small inundation patches or were located along the edges of larger inundation
window, the four graphics are arranged in the same order as (a) to (d).
details on inundation classification using the 2007 LiDAR dataset have
been provided by Lang and McCarty (2009). The same method was
used to derive a 1-m inundation map based on the 2009 LiDAR data. No
ground data was collected in 2009 for validating this inundation map.
We assumed it had a similar level of accuracy as the 1-m inundation
map derived using the 2007 Lidar dataset, because both maps were
derived based on similar datasets using the same method.

The 1-m inundation map derived for each date was overlaid on
the 30-m grids of the Landsat data to calculate subpixel inundation per-
centage (SIP) at the 30-m resolution. Inundated and non-inundated
1-m pixels were assigned 100% and 0% inundation, respectively. Most
of the 1-m transition pixels were partly inundated, and were assigned
an average inundation value of 50%, because their exact inundation
value could not be determined according to the LiDAR data. Some of
the 1-m transition pixels were not inundated, including evergreen
forests and dark pavements in urban build-up areas, and therefore
were assigned an inundation value of 0%. Based on local expert knowl-
edge (A. Baldwin and D. Whigham, personal communication) and our
field experiences in the Delmarva region, evergreen species rarely
occur over inundated areas. In this study, evergreen forests were iden-
tified based on NWI (http://www.fws.gov/wetlands, accessed in
March, 2013) and C-CAP (http://www.csc.noaa.gov/digitalcoast/data/
ccapregional, accessed in March, 2013) wetland maps. Once all 1-m
Error (%, d)
<20%
20-40%
40-60%
60-80%
80-100%

SIP Value (%, a-c)

0 100

0 1 2 3 40.5
Km

) SIP map derived by applying the mean adjustment
nction shown in Fig. 3a to (a)

d) Absolute difference between (b) and (c)

d the 2007 reference SIP map (c). Most of the large differences between (b) and (c) were
patches (d), which is better illustrated through two zoon-in windows (e). In each zoom-in

http://www.fws.gov/wetlands
http://www.csc.noaa.gov/digitalcoast/data/ccapregional
http://www.csc.noaa.gov/digitalcoast/data/ccapregional
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Fig. 5. The mean SIP values of the initial RT prediction for 2009 were also mostly lower
than the mean reference SIP values within 2% bins of the 2009 reference SIP map (a).
Most of these biases were corrected by the 2007 polynomial function shown in Fig. 3a,
which resulted in residual biases of about 5% (b). See Fig. 3 for explanations of the black
dot, gray bar, solid line and dashed line.
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pixels were assigned appropriate inundation values, the subpixel inun-
dation percentage (SIP) at the 30-m resolutionwas calculated as the av-
erage of the inundation values of all 1-m pixels within each 30-m grid.

2.3. Inundation modeling

2.3.1. Modeling approaches
We explored three approaches for modeling the relationships

between SIP and Landsat data, including correlation analysis, stepwise
linear regression (SLR), and regression tree (RT) that represented
increasing sophistication in terms of bothmodel inputs andmodel com-
plexity. Themain purpose of the correlation analysis was to understand
the relationships between SIP and individual variables derived using
Landsat data, including the original spectral bands and derived indices
(Table 2), while the SLR and RT were used to derive models with better
prediction accuracy. The SLR assumes a linear relationship. Given the
many available predictor variables listed in Table 2, SLR was used to
identify those that provided the most predictive power and remove
those that did not contribute to overall predictive performance
(Effroymson, 1960). However, the assumption of a globally linear rela-
tionship between SIP and the spectral datamay not hold for wetland in-
undation. Use of nonlinear curve fitting methods in such cases would
require a priori knowledge on the mathematical form of a nonlinear
relationship. The RT algorithm can approximate complex nonlinear
relationships without such a priori knowledge (Breiman, Friedman,
Olshend, & Stone, 1984; Huang & Townshend, 2003). A basic regression
tree algorithm typically produces a set of rules in a decision tree format,
which can be interpreted to show how the independent variable is cor-
relatedwith the predictor variables under different conditions (De'ath&
Fabricius, 2000). Many computer software packages that implement
RT also incorporate ensemble and/or bootstrap techniques to improve
prediction accuracy (e.g. Breiman, 2001). Ensemble or bootstrapped
RT often produces a large number of trees, and the final prediction for
each unseen sample is a weighted sum of the predictions of all trees
(Chan, Huang, & DeFries, 2001). As a result, the rules in ensemble or
bootstrapped trees are not as interpretable as those in a basic regression
tree. RT has been implemented in many computer software packages.
The Cubist package was used in this study (see http://www.rulequest.
com/cubist-info.html for more details on this package). This package
has been used to model land cover and biophysical variables using re-
mote sensing data in many studies (e.g. Blackard et al., 2008; Walker,
Kellndorfer, LaPoint, Hoppus, & Westfall, 2007).

2.3.2. Model calibration and testing
Both reference SIP datasets derived using 2007 and 2009 LiDAR

data could be used to develop the statistical models described in
Section 2.3.1. In this study the 2007 dataset was selected for model
development, because (1) 2007 was a year with average conditions;
(2) the 2007 inundation map had been validated using field observa-
tions and was found highly accurate (Lang et al., 2012); and (3) the ac-
quisition dates of the 2007 LiDAR dataset and Landsat imagewere closer
than those of the 2009 datasets. For the correlation analysis, all 30-m
SIP pixels derived from the 2007 LiDAR data were used. For SLR and
RT, a random sample of 30% of those pixels (11,000 pixels in total)
was used as training data. The remaining 70% (25,408 pixels in total)
were used as test data to evaluate the SLR and RT models derived
from the training data.

Training and test accuracies of the SLR and RT models were mea-
sured using rootmean square error (RMSE) and the coefficient of deter-
mination (R2) of the relationships between the LiDAR-based and
Landsat-predicted SIP values:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
SIPp−SIPr

� �2
=N

r

where SIPp and SIPr are the predicted and reference SIP values, respec-
tively, and N is the total number of samples.

The 2009 reference SIP datasetwas used to demonstrate the applica-
bility of the final SIP model derived using the 2007 reference dataset to
other years. Specifically, it was used to evaluate the predictions derived
by applying the 2007 SIP model to the 2009 Landsat image. Predictions
of the 2007 SIP model for 2005 and 2010 were evaluated qualitatively
using the Landsat images of those two years. No other reference SIP
data were available for an independent assessment for these two years.

2.3.3. Model prediction, mean adjustment, and inundation change analysis
As will be discussed in Section 3, the RT model was more accurate

than the SLR model and therefore was selected to produce SIP maps
for the study area. However, this model also underestimated SIP sub-
stantially for areas with SIP values N 20%. The mean of the predicted
SIP values were substantially lower than those of the 2007 reference
data at all inundation levels above 20% (see Fig. 3a in Section 3.1.3). To
correct for such biases, we divided the LiDAR-based SIP values in the
2007 training dataset into 2% bins. Mean LiDAR-based and Landsat-
predicted SIP values were then calculated separately for each bin.
These two sets of mean SIP valueswere then used to derive a polynomi-
al function, whichwas then applied to the RT predictions to remove the
biases in the mean SIP values. The 2% binning range was chosen based
on a heuristic analysis of the RT predictions. This binning range

http://www.rulequest.com/cubist-info.html
http://www.rulequest.com/cubist-info.html
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produced a relatively large number of data points (50) for fitting poly-
nomial functions up to the 3rd order while allowing each bin to have
enough data values for calculating a mean and its standard deviation.
The standard deviation revealed that most of the bins appeared to
have similar levels of variance (Fig. 3a).

The final RT model and the mean adjustment polynomial function
were applied to the 2007 Landsat SR image aswell as the radiometrical-
ly normalized images for the other three years to produce SIP maps for
all four years. These maps were then used to calculate inundation
changes over the entire study area.

We evaluated whether the derived inundation changes were corre-
lated with changes in local drought condition and stream flow. Local
drought condition was measured using a 2-month average Palmer Z-
score index obtained from the National Climate Data Center of the Na-
tional Oceanic and Atmospheric Administration (NOAA NCDC, http://
www.ncdc.noaa.gov/oa/climate/research/prelim/drought/palmer.html.
Last accessed in March, 2013). For each of the four years considered in
this study, the 2-month period included the acquisition month of the
Landsat image and the previous month (Table 2). Stream flow was a
4-day (including the acquisition day of each Landsat image and the
previous three days, Table 2) average of water discharge measured at
the USGS streamgage station near Greensboro, Maryland (See location
shown in Fig. 1) (http://waterdata.usgs.gov/nwis/rt/. Last accessed in
March 2013).

3. Results

3.1. Inundation modeling using Landsat data

3.1.1. Correlations between SIP and Landsat spectral data
Relationships between SIP and individual Landsat bands and spec-

tral indices were quantified using the coefficient of determination (R2)
(Table 4). Among the sixteen variables tested (Table 3), the difference
SIP Value (%, c & d)

0 100

(a) Landsat image acquired on 02/08/2005 (

(c) 2005 SIP map produced by applying the 2007
inundation model to (a)

(
i

Fig. 6. 2005 (c) and 2010 (d) SIPmaps predicted by applying the inundationmodel derived usin
Landsat images are shown with bands 5, 4, and 3 in red, green, and blue. Open water bodies a
patterns in the two SIP maps matched those seen in the input Landsat images.
between TCW and TCG (TCWGD) had the highest R2 value. The 41%
SIP variance explained by this variable was substantially higher than
the 22% explained by TCW alone. In general, TCW is considered a good
indicator of water and soil wetness. But it is also sensitive to the mois-
ture content of green vegetation (Crist & Cicone, 1984; Stoner &
Baumgardner, 1981). The Landsat images used in this study had some
green vegetation, mostly evergreen forests, although they were ac-
quired during the leaf-off season. Derived by subtracting TCG from
TCW, TCWGD should be less sensitive to green vegetation than TCW.
Several other variables, including bands 5, 4, 7, and TCB, which were
highly correlated among themselves, also had R2 value of N20%. But
some of the other indices that were found useful for wetland character-
ization in previous studies, including NDVI, NDWI-1, NDWI-2, TCA, IVR,
and IR, had little or no correlation with SIP (R2 b 0.1) in this study. It
should be noted that this does not mean these variables are not useful
for inundation modeling. In fact, many of them were used heavily by
the SLR and RT models discussed in Section 3.1.2.

3.1.2. Performance of the SLR and RT models
By usingmultiple variables, both SLR and RT yielded better relation-

ships between predicted and LiDAR-based SIP values than the best rela-
tionships that could be derived using a single variable (Table 5). The
SLR model had an R2 value of 0.51 when evaluated using the training
data. Predictor variables selected by this model included the 6 original
Landsat spectral bands plus all indices derived through nonlinear trans-
formation of those bands, including NDVI, NDWI-1, NDWI-2, TCA, IVR,
and IR. The four tasseled cap indices (TCB, TCG, TCW, and TCWGD)
were not selected because they were simply linear combinations of
the 6 spectral bands, although individually three of them had relatively
high correlations with SIP (Table 4). The R2 value was further improved
to 0.72 when RT was used instead of SLR, and model error as measured
using RMSE was reduced from 14.07% to 10.57%. Overfitting was not a
major issue for both the SLR and RT models. They had slightly higher
0 1 2 3 40.5
Km

b) Landsat image acquired on 03/21/2010

d) 2010 SIP map produced by applying the 2007
nundation model to (b)

g 2007 data to the Landsat images acquired in 2005 (a) and 2010 (b), respectively. The two
nd pixels with high SIP values should look dark in these images. Visually the inundation

http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/palmer.html
http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/palmer.html
http://waterdata.usgs.gov/nwis/rt/
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RMSE valueswhen evaluated using the test dataset than using the train-
ing dataset, although for the RT model the test dataset yielded a lower
R2 value than the training dataset.

Given the complex, likely nonlinear relationships between SIP
and the spectral values of Landsat data, the better performance of RT
as compared with SLRwas expected, because RT can approximate com-
plex nonlinear relationships by partitioning a dataset into subsets such
that the relationship within each subset can be simplified to a linear
model (Huang & Townshend, 2003). This is consistent with observa-
tions made in many previous studies (e.g. Li et al., 2011; Yang, Huang,
Homer, Wylie, & Coan, 2003). Therefore, the RT model was used to pre-
dict inundation for the entire study area.

3.1.3. Effectiveness of mean adjustment
An examination of the RT predictions revealed that the predicted

mean values for SIP N 20% were substantially lower than the mean
reference SIP values (Fig. 3a). These biases likely were related to the
extremely unbalanced training data distribution—over 60% of the
a) Feb. 2005

c) Mar. 2009

SIP Value (%)

0 100

Fig. 7. Final SIP maps for the upper Choptank River sub-watershed derive
training samples had a SIP value of 0% andmore than half of the remain-
ing had SIP values of b20%. By dividing the reference SIP values into 2%
bins, the relationship between the mean predictions and mean refer-
ence SIP values within those bins could be approximated using a second
order polynomial function (R2 = 0.98, Fig. 3a). By adjusting the initial
RT prediction using this polynomial function, most of the biases
between the mean values of the original RT prediction and the mean
reference SIP values were removed (Fig. 3b), although this resulted in
an increase in the RMSE from 12.49% to 15.16%.

A comparison between the SIPmap produced by the initial RTmodel
(Fig. 4a) and the reference SIP map (Fig. 4c) shows that many wetland
patches with very high SIP values were under-predicted by the initial
RT model. After applying the mean adjustment function, the under-
predictions were greatly reduced, and the wetland patches with high
SIP values appeared to better match those in the reference SIP map
(Fig. 4b). Further examination of the errors in the final SIP map derived
aftermean adjustment (Fig. 4d) revealed that those errorswere small in
non-inundated areas (SIP = 0%) or areas with SIP N 50%. Over 90% of
b) Mar. 2007

d) Mar. 2010

0 2.5 5 7.5 101.25
Km

d using the inundation modeling approach developed in this study.
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the area covered by the LiDAR data and 85% of the forested areas had
prediction errors of less than 20%. Most of the larger errors appeared
to be associated with residual misregistration errors between the
LiDAR data and the Landsat images (up to 1–2 30-m Landsat pixels),
as they were often located around small inundation patches or along
the edge of larger patches (Fig. 4(d & e)).

3.1.4. Applicability of the 2007 models to other years
To evaluatewhether the RTmodel and themean adjustment function

developed for 2007 could be applied to other years, we directly applied
them to the 2005, 2009, and 2010 Landsat images that were radiometri-
cally normalized as described in Section 2.2.2. The resulting SIP maps
for 2009 were evaluated using the reference SIP map derived using
the 2009 LiDAR dataset. Fig. 5a shows that the mean predictions of
the initial RT model for 2009 had biases similar to those seen in the
2007 RT predictions (Fig. 3a). A mean correction polynomial function
could be derived using the 2009 reference SIP dataset (Fig. 5a), but
that function was not statistically different from the one derived using
2007 data (p-value = 0.09), suggesting that the 2007 mean adjust-
ment function in Fig. 3a could be applied to 2009 and the other two
years. Fig. 5b shows that most of the biases in the 2009 predictions
were removed using the 2007 mean adjustment polynomial function
shown in Fig. 3a, although there seemed to have residual biases of
~5% in SIP value.

No LiDAR based reference SIP data were available for either 2005
or 2010; hence quantitative validation of the final SIP maps for those
two years was not possible. However, visual examination of the 2005
Landsat image (Fig. 6a) revealed that the inundation patterns as seen
in that image matched the final SIP map derived by applying the 2007
models to the 2005 image (Fig. 6c). Similarly, the inundation patterns
seen in the 2010 Landsat image (Fig. 6d) matched those predicted by
applying the 2007 models to the 2010 image (Fig. 6b). Therefore, the
inundation models derived using the 2007 data were deemed robust
enough for producing SIP maps for the other three years after the
Landsat images acquired for those years were radiometrically normal-
ized to the 2007 image as described in Section 2.2.2.

3.2. Inundation changes within the upper Choptank River sub-watershed

Fig. 7 shows the SIP maps over the upper Choptank River sub-
watershed derived by applying the final RT model and mean adjust-
ment function to the Landsat images acquired in 2005, 2007, 2009,
and 2010. Inundation was highest in 2010, followed by 2005 and
2007. 2009 had the least inundated areas. To quantify area changes at
different inundation levels, we divided the SIP values into 5 classes:
non-inundated (SIP b 0.1%), low inundated (0.1% ≤ SIP b 25%), medi-
um inundated (25% ≤ SIP b 50%), high inundated, (50% ≤ SIP b 75%),
and near complete inundated (SIP ≥ 75%). Since inundation was the
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Fig. 8. Changes in the total area of different inundation classes over the upper Choptank
River sub-watershed for the four years analyzed.
main focus of this study, only the four inundated classes are further
discussed in the remaining sections.

Fig. 8 shows the total areas of the four inundated classes over the
four years, sorted in the order of increasing amount of high and near
complete inundation. This order (i.e., 2009, 2007, 2005 and 2010) also
corresponds to the wetting trend suggested by the Palmer Z-score
index. The total area of the near complete inundated class increased
by almost five times in the wet year of 2010 as compared to the dry
year of 2009, while that of the high inundated class more than tripled.
The medium inundated class also saw some increases from dry to wet
years, but the low inundated class did not have a particular trend. Its
total area was smaller in the wetter years of 2007 and 2010 than in
the drier years of 2005 or 2009.

The inundation changes derived above were correlated with local
drought conditions and stream flow (Fig. 9). Both the Palmer Z-score
index and water discharge measured at the Greensboro streamgage
were highly correlated with the total areas of the high inundated and
near complete inundated classes, and to a lesser degree,with themedium
inundated class. They were not correlated with the low inundated class,
which was expected since area changes in this class did not seem to
have any relationship with the dryness or wetness of any particular year.

4. Discussion

Remote sensing provides an economical data source for mapping
inundation, one of the most important abiotic attributes of wetlands,
across the landscape. Lang and McCarty (2009) have demonstrated
that LiDAR intensity data can be used to derive highly reliable inundation
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classifications. In this study we develop an approach that further inte-
grates LiDAR intensity data and Landsat images to allow for inundation
mapping beyond the areas and years covered by available LiDAR data.
This approach includes several key elements designed to improve inun-
dation mapping using Landsat data.

First, the use of regression tree instead of uni-variate or multiple
linear regression techniques substantially improved the accuracy of in-
undation modeling, which was consistent with previous observations
on the comparative performances of RT and linear regression methods
(e.g. Li et al., 2011; Yang et al., 2003). RT predictions were often
overestimated in the low end and underestimated in the high end
(e.g. Powell et al., 2010;Walker et al., 2007). In this study, underestima-
tion appeared to be themain problem for areaswith SIP N 20% (Fig. 3a).
But it was correctable using themean adjustment method developed in
this study. As discussed earlier, the underestimation in the initial RT pre-
dictions might be related to the fact that the majority of the study area
had very low SIP values. We experimented with models developed
using training datasets consisting of approximate the same number of
samples at different SIP levels, but those models also had underestima-
tions. It should be noted that prediction biases were not unique to RT.
We examined the predictions by the SLR model and observed that the
mean of the predicted SIP values at different inundation levels had sub-
stantial biases too. These observations suggest that use of statistical
methods such as SLR or RT to model subpixel land cover components
may result in substantial biases when the distributions of the subpixel
percentage of those land cover components are highly unbalanced.
Such highly unbalanced distributions are common for land cover com-
ponents likewetland inundation and urban imperviousness, which typ-
ically account for very small portions of the total area of a large region.
The mean adjustment method developed in this study appeared to be
effective in reducing those prediction biases.

Second, although the Landsat images used in this study had been
converted to surface reflectance values that were highly consistent
with near simultaneous MODIS measurements (Feng et al., 2012,
2013), additional radiometric normalization was necessary. Water
pixels with a SIP value of 100% had different mean reflectance values
among the four years (Table 2). Although the absolute values of these
differences were relatively small (approximately 1%–2%), they
accounted for large portions of the spectral signals of water, and there-
fore could result in large differences in predicted SIP values. Improve-
ment in atmospheric correction algorithms likely won't be able to
reduce these differences much further, because those differences were
close to or within the calibration uncertainties of the Landsat sensors
(Markham & Helder, 2012). Some of the differences were not even re-
lated to atmospheric effect, but could have resulted from changes in
water conditions (e.g., turbidity, surface vegetation). With the majority
of atmospheric effects having been adjusted by the LEDAPS atmospheric
correction algorithm, however, the simple dark object subtraction
method employed in this study seemed to be effective in removing
much of the temporal variations of the reflectance values of water
pixels.

While in the inundation change analysis we divided the SIP values
into 5 classes, being able to map inundation as a continuous variable
allows analysis using any customized SIP threshold values. As a demon-
stration, we classified the derived SIP data into binary maps of inundat-
ed and non-inundated using SIP threshold values of 0.5%, 1%, 5%, and
values between 10% and 90% with a 10% interval, and reexamined the
relationships between inundation and river discharge as well as the
Palmer Z-score index. When inundation area was calculated as the
total area of inundated pixels as classified using the above threshold
values, its relationships with river discharge and the Palmer Z-score
index (R2) improved greatly when the SIP threshold value increased
from 0.1% to 30%, and continued to improve until the SIP threshold
value reached 60% to 80% (Fig. 10a). When inundation area was calcu-
lated as the total SIP value of the inundated pixels, however, those rela-
tionships were less affected by the SIP threshold value used, especially
when it was below 30% (Fig. 10b). These results suggest that caution
should be taken when inundation classifications are used to analyze re-
lationships between inundation and river discharge or local drought
index, because the results may be sensitive to the threshold value
used to separate inundation from non-inundation. This problem will
be greatly reduced by using SIP maps as derived in this study.

The errors in the 30-m SIP maps may be further reduced when the
maps are aggregated properly for use in model studies. Currently most
hydrology models use grid cells larger than 30-m (e.g. Nelson &
Palmer, 2007; Niehoff, Fritsch, & Bronstert, 2002). Huang (1999) dem-
onstrated that for spatial density variables like percent tree cover or
SIP, the errors in fine resolution map products can be reduced when
those products are aggregated to coarser resolutions through spatial
averaging. Depending on the level of spatial autocorrelation among
the errors of adjacent pixels at the original resolution, those errors
could be reduced by as much as 50% when pixel size is doubled
in each dimension. In this study, RMSE values of the 2007 and 2009
inundation maps were reduced from 15.16% to 6.5% and 15.0% to 7.3%
respectively, when those maps were aggregated from 30-m to 90-m
through spatial averaging (Fig. 11).

Given the global availability of Landsat data, both historically
(Goward et al., 2006) and for the foreseeable future (Loveland &
Dwyer, 2012), and the fact that LiDAR data are becoming increasingly
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more affordable and are already available in many areas in the United
States and other countries, the approach developed in this study has
potential for assessing historical inundation changes and formonitoring
future changes in many regions. Such large area monitoring cannot be
achieved using high resolution datasets, because 1) contiguous cover-
age of historical high resolution data does not exist in many areas, and
2) the costs for purchasing such data, if exist, would be overwhelming.
As with the validation of other types of historical changes (Cohen,
Fiorella, Bray, Helmer, & Anderson, 1998; Huang et al., 2010), historical
inundation change products are difficult to validate due to lack of refer-
ence data.While reference SIP data can be derived using the approach of
Lang andMcCarty (2009) for areas covered by available LiDAR intensity
data, LiDAR data did not become available until the recent decade or so.
Alternative data sources need to be explored in validating inundation
changes that occurred before LiDAR data became available or over
areas not covered by available LiDAR data. In this study, only a qualita-
tive assessment of the 2005 and 2010 SIP maps could be achieved
through a visual examination of those maps against the inundation pat-
terns in the input Landsat images. However, the clearly increasing
trends of inundated areas (especially the high inundated and near com-
plete inundated classes) from dry towet years (Fig. 8) and the high cor-
relations between observed inundation changes and local drought
index and stream flow (Fig. 9) can attest to the reliability of the inunda-
tion maps developed in this study. Such correlations, if present over
larger areas and for longer time periods, may be useful for improving
model studies of drought, wetland hydrology, and stream runoff.
The inundation mapping approach developed in this study is most
effective for use with data acquired during the leaf-off season. It should
not be used with data acquired during the leaf-on season, because in
forested wetlands, most of the signal from surface water is blocked by
the presence of a green canopy cover during that season. Synthetic Ap-
erture Radar (SAR) radar, especially multi-frequencymulti-polarization
radar, should allow better characterization of flooded forests (Hess,
Melack, Filoso, & Yong, 1995; Hess,Melack, & Simonett, 1990), although
radar data acquired during the leaf-off season also seemed to yield
better results than those acquired during the leaf-on season (Lang &
Kasischke, 2008; Lang et al., 2008).

5. Conclusions

Reliable and up-to-date inundation information is essential for
improved conservation and management of wetlands to ensure that
they provide sustained ecosystem services. In this study, we developed
a new approach for mapping wetland inundation using Landsat and
LiDAR data, and demonstrated its effectiveness for monitoring wetland
inundation change over the upper Choptank River sub-watershed. The
results revealed large changes in wetland inundation between dry, av-
erage, and wet years, which were highly correlated with local drought
conditions and stream flow. The developed approach has potential for
deriving historical inundation changes in areas covered by available
Landsat and LiDAR data. As the costs of LiDAR data continue to decline
while demand increases, such datawill become increasinglymore avail-
able. With the successful launch of the Landsat 8 (also known as the
Landsat Data Continuity Mission (LDCM)), global Landsat data will
be acquired continuously. Therefore, the approach developed in this
study may allow continuous monitoring of ongoing and future inunda-
tion changes for increasingly more areas. The strong correlations be-
tween wetland inundation and drought conditions and stream flow as
demonstrated in this study suggest that the inundation change products
derived using this approach may be useful for improving model studies
of drought, wetland hydrology, and stream runoff. Further investiga-
tions are needed to evaluate whether such relationships exist over larg-
er areas and for longer time periods.
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