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Abstract. Humans cause most wildfires in northern Wisconsin, but interactions between human and biophysical variables
affecting fire starts and size are not well understood. We applied classification tree analyses to a 16-year fire database
from northern Wisconsin to evaluate the relative importance of human v. biophysical variables affecting fire occurrence
within (1) all cover types, and (2) within forest types in each of four different fire size groupings (all fires; fires >0.4 ha
(1 acre); fires >4ha (10 acres); fires >16ha (40 acres)). Housing density was the most important indicator of fire
observations. Increasing minimum fire size increased the relative importance of biophysical variables. Key biophysical
variables included land cover type, soil moisture indicators, and an index of presettlement fire rotation associated with
glacial landforms. Our results indicate the likelihood of fire starts is primarily influenced by human activity in northern
Wisconsin, whereas biophysical factors determine whether those fire starts become large fires. Important interactions
between human and biophysical variables were observed for nearly all fire types and size thresholds examined. Our results
have implications for both ecological restoration and the management of fire risk within historically fire-prone systems
currently experiencing rapid rural development.
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development, wildfire occurrence.

Introduction

Past research has shown that presettlement vegetation and its
characteristic fire disturbance regimes were closely tied to
glacial landforms in the Great Lakes Region of North Amer-
ica (Brubaker 1975; Cleland et al. 2004; Schulte and Mladenoff
2005). For example, sandy outwash plains were historically
occupied by pyroclastic vegetation types such as jack pine (Pinus
banksiana), whereas richer soil types more typical of glacial
moraines were occupied by deciduous northern hardwood forest
types that rarely burned (Grimm 1984; Whitney 1986). Histor-
ical fire regimes may also provide context for the patterns of
vegetation and fire disturbances that we observe today (Cleland
et al. 2004). Yet, historically important biophysical drivers of fire
regimes may have less relevance to modern fire patterns due to
the often overwhelming influence of modern society on current
fire regimes.

Contemporary fires in the Great Lakes region are generally
started by humans, responsible for over 97% of fires in recent
decades (Cardille et al. 2001). A rigorous fire suppression pro-
gram enforced throughout the region counters these ignitions,
but has also reduced the annual area burned relative to preset-
tlement by an order of magnitude (Cleland et al. 2004). Hence,
frequent but small wildfires define the modern fire regime in the
region, though large (400—4000 ha (1000-10 000 acres)) wild-
fires still occur (Radeloff et al. 2000a; Walker et al. 2003),
posing a continuing threat to human safety and property in rural
areas. As human-caused wildfire starts are most common around
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human developments and travel corridors (Cardille et al. 2001),
the greatest risk of wildfire likely occurs where rural develop-
ments overlap with fire-prone ecosystems (Haight et al. 2004).
Innorthern Wisconsin, fire-adapted ecosystems such as pine bar-
rens are being converted to hardwood cover types by succession
owing to the absence of catastrophic fire (Radeloff ez al. 2000a),
and historically common red pine (Pinus resinosa)—white pine
(P, strobus) and white pine—hemlock (7suga canadensis) systems
have never recovered following the exploitative logging period
in the late 19th century (Stearns 1997). Restoration for each of
these ecosystems will require active management that includes
prescribed fire and wildfire (Radeloff ef al. 2000a; Stearns and
Likens 2002). Reconciling ecosystem restoration with human
safety will require a firm understanding of the human and bio-
physical factors underlying wildfire patterns of this primarily
forested region.

Two interrelated elements of fire behaviour influence wild-
fire patterns across landscapes: fire starts (i.e. fire ignitions that
become wildfires) that dictate fire occurrence and frequency,
and fire spread that affects fire size. Each element may be influ-
enced by both human and biophysical factors. Humans influence
the spatial pattern and frequency of fire starts through activ-
ity associated with development, transportation networks, and
recreation (Cardille et al. 2001; Pew and Larsen 2001; Roman-
Cuesta et al. 2003). However, the likelihood of a successful fire
start is also dependent in part on biophysical factors such as fuel
moisture (Forestry Canada Fire Danger Group 1992), antecedent
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weather (Prestemon et al. 2002), and the relative flammability
of vegetation and litter as determined by fuel moisture and veg-
etation type (Frelich and Reich 1995). Humans influence fire
spread through aggressive fire detection and suppression, and
their efforts may vary in space and time because of road access,
priorities associated with human dwellings, and ultimately the
allocation of firefighting resources. However, biophysical fac-
tors primarily determine the flammability and connectivity of
fuels and thus the ability of a fire to spread to adjacent vegeta-
tion. For example, dry and continuous conifer canopies can burn
as intense, fast-moving crown fires that are difficult to suppress,
whereas the crowns of deciduous tree communities seldom burn
(Cumming 2001). Tree species also vary in relative flamma-
bility of their litter (Frelich and Reich 1995), and tree species
distribution is constrained, in part, by soil moisture and nutri-
ent availability (Smith and Huston 1989), and also by past fire
regimes and management legacies (Radeloff et al. 2000a). Non-
forested cover types, such as wetlands, cultivated crops, and open
fields can also readily burn when dry, and their distribution also
depends on both human land use and landform patterns (Rade-
loff et al. 2000b). It is the interaction among these social and
biophysical drivers that ultimately determine contemporary fire
regimes in the region.

Georeferenced fire records collected by state and federal
agencies in the upper Midwest, United States, have been previ-
ously analysed with respect to climatic, ecological, and human
variables to gain insight about the key factors affecting mod-
ern fire regimes in the region (Cardille and Ventura 2001;
Cardille et al. 2001). In parallel, Cleland ez al. (2004) have
developed a synthetic landscape ecosystem classification system
that maps biophysical units based on associations of ecological
characteristics known to influence historical fire regimes and
the biogeography of fire-prone v. fire-resistant communities in
the same area. This classification correlates well with modern
fire return intervals in northern Lower Michigan (Cleland et al.
2004). However, a formal analysis of the classified forest fire
regimes as they interact with modern, human-dominated fire
patterns has not yet been performed.

A common approach to the spatial analysis of modern fire
databases is the application of logistic regression (i.e. logit) mod-
els to predict fire occurrence with respect to different geographic
variables (Vega-Garcia et al. 1995; Cardille et al. 2001; Pew and
Larsen 2001). Though this approach can be powerful in terms
of predictability, it is also limited by the classical parametric
assumptions of normality, linear relationships, and absence of
multicollinearity between independent variables. Relationships
between biophysical and social data, particularly in a spatial
context, can often be complex, non-linear, and involve high-
order interactions. Classification and regression trees are far
more flexible in their data requirements and ability to evalu-
ate complicated interactions among variables, and can therefore
serve as a useful alternative to classical parametric analyses in
exploring relationships within complex datasets (Breiman et al.
1984; De’ath and Fabricius 2000).

We used classification trees to evaluate the relative impor-
tance of human v. biophysical variables on wildfire occurrence
and size in northern Wisconsin, USA, using a 16-year fire record
database. Specifically, we wished to address whether the histor-
ical fire regimes and their underlying drivers (i.e. soil texture,
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vegetation, etc.) are useful indicators of contemporary fire risk.
If so, then biophysical factors historically associated with large
and frequent fires should influence fire occurrence, size, or both.
We focussed on the state of Wisconsin because its Department of
Natural Resources (DNR) consistently recorded the cover type
where a given wildfire occurred, allowing us to separate for-
est wildfires from those wildfires occurring on open land cover
types (e.g. agricultural, wetland). Hence our analyses built on
previous research of modern fires in the Lake States (Cardille
and Ventura 2001; Cardille et al. 2001; Cleland et al. 2004)
by explicitly evaluating the interactions among social and bio-
physical variables as they affect cover-specific wildfires using
non-parametric techniques.

Methods

Study area

We focussed on the Laurentian Mixed Forest Province (McNab
and Avers 1994) within northern Wisconsin (~58 000km?),
where either the Wisconsin DNR or the US Forest Service
had primary wildfire attack responsibility (Fig. 1). The area
is primarily forested (67%), with scattered residential areas,
seasonal lakeshore development, and low-to-moderate levels
of agricultural activity (21%). Topographic relief ranges from
flat to gently undulating with elevations ranging between 175 m
and 600 m above sea level. The forest composition ranges from
northern hardwoods (sugar maple, Acer saccharum; American
basswood, Tilia americana; yellow birch, Betula alleghaniensis)
on nutrient-rich glacial till to pine- and oak-dominated systems
(e.g.jack, red, and white pine; red oak, Quercus rubra; pin oak, Q.
ellipsoidalis) underlain by sandy glacial outwash plains (Curtis
1971). Boreal tree species (e.g. aspen, Populus spp.; balsam fir,
Abies balsamea; white spruce, Picea glauca) are also common
in this ecological transition zone, as are lowland conifer species
(black spruce, P mariana; tamarack, Larix laricina) (Pastor and
Mladenoff 1992). Forests in the region are actively managed, and
more than a third of the land area is in the public domain under
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Fig. 1. Northern Wisconsin (USA) study area (shaded in black), defining
the area within the state where either the Wisconsin Department of Nat-
ural Resources (DNR) or the US Forest Service has primary fire attack
responsibility.
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federal, state, and county jurisdictions. Agricultural activities
include row crops (e.g. corn), hayfields, and dairy pastures.

Wisconsin fire database

We analysed Wisconsin fire records excerpted from the
Lake States Fire Database compiled as part of the Great
Lakes Ecological Assessment (Cardille and Ventura 2001,
http://www.ncrs.fs.fed.us/gla/, accessed 24 July 2007). Each
wildfire observation (referred to hereforth as simply fire obser-
vations) in the database represents a wildfire that was suppressed
by either the Wisconsin DNR or the US Forest Service. Between
1985 and 2000, a total of 13513 fires were recorded in the
study area. Because fires controlled by private citizens were
not recorded, fire observations should be interpreted as those
fires requiring agency suppression rather than all fires per se.
Nonetheless, state and federal policy is to suppress all wildfires,
and the minimum fire size reported was 0.004 ha (0.01 acre),
suggesting that most fire starts in the study area are included
in the database. Each fire record includes attributes such as fire
size, the date and time the fire was observed, the estimated cause
of the fire, and the cover type at the origin of the fire (Wisconsin
Department of Natural Resources 1996). The origin of each fire
was assigned to a square mile (2.59km?) area corresponding
with a section of the Public Land Survey System (PLSS). Our
unit of analysis was therefore a PLSS section, where section
boundaries were used to calculate mean values for each bio-
physical and human factor described below. The majority of fire
observations were small (mean = 0.82 ha (2.09 acres)), and only
three fires (max =476 ha (1210 acres)) exceeded the 252 ha (640
acres) section sample unit size. We therefore assumed that fires
were contained within a PLSS section. Forest fires were sepa-
rated from the rest of the database using the cover type listed by
the recording agency, where the reported cover type was defined
as the major vegetation type within the 4-ha (10-acre) area sur-
rounding the ignition point (Wisconsin Department of Natural
Resources 1996).

Biophysical factors

Soil characteristics.  Soil texture and moisture influence both
vegetation composition and fuel moisture. The US General
Soil Map (i.e. STATSGO, http://soildatamart.nrcs.usda.gov/,
accessed 24 July 2007) contains general soil association units
and soil attributes characterising soils and non-soil areas that
were generalised from more detailed soil surveys and other
data sources (e.g. topography, climate, satellite imagery). We
extracted four soil attributes related to soil moisture and texture
from the STATSGO soil polygons: low available water-holding
capacity, high available water-holding capacity, soil drainage
class, and hydric soil rating. Available water-holding capacity
was first averaged across soil layers, weighted by layer depth, for
each component of the STATSGO mapping units (Table 1). We
then calculated area-weighted averages for each mapping unit,
using the percentage of each soil component in the mapping unit
as weights. Drainage class refers to the frequency and duration
of periods when the soil is free of saturation, and includes seven
classes ranging from ‘excessive’ to ‘poor’. Drainage was con-
verted to an ordinal scale, where 1 =poor and 7 = excessive
drainage. Hydric rating is a binary variable indicating the
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presence or absence of hydric soil conditions, and was con-
verted to 0 (not hydric) and 1 (hydric). Both variables were
defined at the soil component level, and were therefore calculated
as area-weighted averages for the STATSGO mapping units.
Because STATSGO polygons are large (median size = 62.3 km?,
minimum = 1.1 km?, maximum = 748.1 km?) relative to the
PLSS sections, soil variables were simply sampled from the
STATSGO polygons using the centroids of the PLSS sections.
SSURGO is the most detailed level of soil mapping
done by the US Natural Resources Conservation Service,
mapped at scales ranging between 1:12000 and 1:63 360
(http://soildatamart.nrcs.usda.gov/, accessed 24 July 2007) with
mapping units with much finer resolution than the PLSS sec-
tions. Although SSURGO data existed for 20 of the 27 counties
within the study area, most of the corresponding attribute data
is not yet in digital form and therefore could not be used directly
in our analyses. However, SSURGO data was used to map
presettlement fire rotations, described in the next section.
Presettlement fire rotation. SSURGO soil polygons were
assigned one of six presettlement forest replacement fire rota-
tion (FR) categories based on soil texture and drainage, glacial
landform and presettlement vegetation following the methods of
Cleland et al. (2004). These criteria are now being used to map
biophysical units for the national fire regime condition class
effort and this nomenclature has been adopted in the present
research. For example, biophysical units historically dominated
by jack pine systems underlain by coarse-textured sandy soils
(FR1) experienced frequent, large catastrophic stand-replacing
fires (Table 2; Fig. 2). In contrast, biophysical units historically
dominated by northern hardwood systems, underlain by fine-
textured sandy loam to heavy clay and silt loam soils (FR4)
experienced very infrequent stand-replacing fires (Table 2). In
the seven counties where SSURGO data was not digitally avail-
able, coarser-scale land-type association polygons (Cleland et al.
1997) were classified using the same methodology (Cleland et al.
2004). When necessary, land-type polygons were subdivided or
revised based on soil or historical vegetation criteria.
Presettlement fire rotations were estimated for each biophys-
ical unit using General Land Office (GLO) records from 1836
and 1858. Evidence of fire occurrence was inferred from GLO
surveyor notes, recorded along transects of section lines, that
included ‘burned’ or ‘blown down’ and other indications of
recent disturbance such as ‘pine thickets’, pine and oak bar-
rens, prairies, and so forth (Cleland et al. 2004). Historical fire
boundaries were determined using ordinary kriging for the inter-
polation of the fire occurrence data points, with output in the
form of a probability map (Maclean and Cleland 2003). Histori-
cal fire rotations were determined by calculating the area burned
for each biophysical unit category and dividing this area by fif-
teen (i.e. the time that evidence of fire was assumed to persist)
to estimate area burned per year (Cleland et al. 2004) (Table 2).
Each biophysical unit class was assigned a value between
1 and 5 corresponding with its ordinal rank in presettlement
fire rotation length (i.e. FR1 =1, FR2=2, FR3=3, FR4=5,
Table 2; Fig. 2). Though the presettlement fire rotations of
wetland systems differed depending on landscape context (i.e.
FR3W wetlands embedded within fire-prone landscapes burned
more frequently than FR4W wetlands embedded within fire-
resistant landscapes; Cleland et al. 2004), the two wetland classes
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Table 1. Biophysical and human variables included in our analyses and their predicted influence of fire starts and size
Variable Abbreviation® Data source® Units Predicted direction of influence®
Fire starts Large fires

Biophysical factors
Available water-holding capacity (high) AWCH STATSGO Proportion - -
Available water-holding capacity (low) AWCL STATSGO Proportion - -
Soil drainage class Drainage STATSGO Index + +
Hydric soils rating Hydric STATSGO Index - -
Presettlement fire rotation PFR Cleland et al. 2004 Index - -
Percentage agriculture and grassland AG WISCLAND Percent Fire type dependent
Percentage forest Forest WISCLAND Percent Fire type dependent
Percentage water Water WISCLAND Percent ? -
Percentage wetland Wetland WISCLAND Percent - -
Relative forest flammability RFF WISCLAND/MRLC Index + +
Stream density StreamDens TIGER kmkm—2 - -
Mean maximum August temperature AugMaxT PRISM °C + +
Mean March precipitation MarPrecip PRISM mm - -
Mean June precipitation JunPrecip PRISM mm - -

Human factors
Population density (1990) PopDens90 US Census Bureau Residents km 2 —+ -
Housing density (1990) HousDens90 US Census Bureau Homes km™2 + -
Population change (1990-2000) PopGrowth US Census Bureau Residents km~2 ? ?
Housing change (1990-2000) HouseGrowth US Census Bureau Homes km—2 ? ?
Percentage of homes occupied by owner PctOwn US Census Bureau Percent ? ?
Percentage of seasonally occupied homes PctSeas US Census Bureau Percent - +
Median home value MedHomeVal US Census Bureau Us$ - -
Distance to road DistRoad TIGER km + -
Road density RoadDens TIGER km km ™2 + -
Distance to railroad DistRail TIGER km + ?
Rail density RoadRail TIGER km km~2 + ?
Distance to city >10 000 people DistLgCity ESRI km + -
Distance to city >1000 people DistSmCity ESRI km + -

A Abbreviations are used in all subsequent figures.

BSee sections on Biophysical factors and Human factors for full data source descriptions.
CPositive signs indicate that the variable is predicted to be positively correlated with the likelihood of (1) fire starts, and (2) large fires. See Predictions section

for full description of predictions.

Table 2. Presettlement fire rotation
This index ranks biophysical units according to their presettlement stand-replacing fire rotation, defined as the
length of time required to burn an area equivalent in size to the total area represented by the classified land units.
A ‘W’ in the original classification indicates a wetland-dominated ecosystem (Cleland et al. 2004)

Fire rotation Rank Soil moisture Dominant presettlement vegetation Presettlement fire
classification rotation (years)
FR1 1 Xeric Jack pine and barrens 62

FR2 2 Less xeric Red and white pine, oak 207

FR3 3 Dry mesic White pine—hemlock 525
FR3W 4 Hydric Wetlands adjacent xeric systems 274
FR4W 4 Hydric Wetlands adjacent mesic systems 1873

FR4 5 Mesic Northern hardwoods 2128

were lumped together for this analysis and given a value of 4
(i.e. intermediate between FR3 and FR4). We combined these
two classes because fire sizes are small relative to presettlement
periods owing to suppression efforts, reducing the importance of
landscape context on wetland fire rotations (Cleland et al. 2004).
The resulting classified coverage was converted to a grid raster
with 30 x 30-m grid cell resolution, and averaged across all cells
within a given PLSS section using the ‘zonalstats’ function in

ArcInfo GRID (Version 8.1, Environmental Systems Research
Institute, Inc., Redlands, CA). Water bodies were classified as
‘no data’, and were therefore ignored (percentage water was
included as another variable, defined below). The resulting vari-
able, called presettlement fire rotation, was a real number index
value ranging between 1 and 5 (Tables 1, 2).

Current land cover (fuel type). A fuel classification that
describes spread rates and potential fire behaviour was not
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Presettlement fire rotation classification for the Laurentian Mixed Forest Province of northern Wisconsin. Fire rotation (FR)

Table 3. Relative forest flammability
Relative forest flammability is an ordinal ranking that translates classified land cover into potential fire risk. The ranking is based on
local expert opinion about how fires might behave within different forest cover types, and fire risk increases with the flammability
rank. This index was applied in lieu of a more comprehensive forest fuel dataset

Rank WISCLANDA cover types Potential fire behaviour and risk

1 Maple, mixed and other broad-leaved, broad-leaved wetlands Lowest surface fire risk

2 Coniferous and mixed wetlands Crown fires rare but possible

3 Aspen, oaks, lowland mixed and other coniferous Surface fire risk or low crown fire risk

4 White spruce, mixed and other coniferous Moderate crown fire risk

5 Jack pine, red pine, upland mixed and other coniferous Pine-dominated systems with greatest crown fire risk

AState-wide satellite classification of land cover (WISCLAND, http://dnr.wi.gov/maps/gis/datalandcover.html/, accessed 24 July 2007).

available for the study area. We therefore substituted current
vegetation for fuel types. Current vegetation was described
from 1992 thematic mapper (TM) imagery classified by
the Wisconsin Initiative for Statewide Cooperation on Land
Cover Analysis and Data (WISCLAND, http://dnr.wi.gov/maps/
gis/datalandcover.html/, accessed 24 July 2007). The percent-
age of four major cover types within each PLSS section
was calculated: agricultural and grassland, forest, water, and
wetland.

Current forest vegetation was further rank-ordered according
to the expected flammability and fire behaviour within the vege-
tation class as estimated by fire managers in the region (Table 3).

One of the WISCLAND classes (mixed or other coniferous)
contained both upland and lowland coniferous vegetation types,
where fires are expected to behave quite differently. We therefore
used the lowland forest class from the 1992 Multi-Resolution
Land Characteristics (MRLC) land cover classification (Vogel-
mann et al. 1998) to subdivide the ‘mixed or other coniferous’
class from WISCLAND into upland and lowland mixed conifers.
This ordinal scale, termed relative forest flammability, was
assigned to each 30 x 30 m-pixel of the classified imagery, and
averaged across all forested pixels in a given PLSS section,
resulting in a real number index value ranging between 1 (least
flammable) and 5 (most flammable) (Table 3).
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Stream density. Linear water features can potentially affect
fire spread, and smaller streams are typically not detected using
Landsat TM imagery. A line coverage of streams was obtained
from the Wisconsin DNR (Geodisc v3.0; 1998), originally digi-
tised from 1:100 000 US Geological Survey (USGS) digital line
graphs (DLGs). We created a stream density raster data layer
(km km~2; 100-m resolution) by applying the ‘linedensity’ func-
tion in ArcInfo GRID to the stream coverage, and then averaged
the stream density values across all cells within a given PLSS
section.

Climate. Cardille et al. (2001) found that three biologically
meaningful and orthogonal climate variables could represent
95% of the variability in monthly mean precipitation and temper-
ature in our study region: maximum August temperature, March
precipitation, and June precipitation. We calculated these vari-
ables using climate data from 1961 to 1990 at 2-km? resolution
(ZedX Corporation, Boalsburg, Pennsylvania, USA). These cli-
matic values were sampled and assigned to PLSS sections using
their centroid locations.

Human factors

Human factors evaluated here represented different indicators
of human population, development, property values, and access
associated with both transportation networks (i.e. roads and rail-
roads) and distance to population centres (Table 1). We used
block-level census data from the 1990 census (Radeloff et al.
2005) to calculate five variables: population density (residents
km™2), housing density (houses km~2), percentage of homes
occupied by owners, percentage of seasonally occupied homes,
and the median home value (US$). We also calculated population
and housing density change between 1990 and 2000 using the
methods of Radeloff et al. (2005). Census block polygons were
converted to 100-m resolution raster layers for each of the vari-
ables, which were averaged across all cells within a given PLSS
section. The exception was median home value, not available
at the block level, calculated instead at the minimum civil divi-
sion level. In the study area, median size for block polygons was
13.9 ha, whereas the median size for minimum civil divisions
was 9323 ha.

Line coverages of railroads and roads were also obtained
from the Wisconsin DNR (Geodisc v3.0; 1998), originally digi-
tised from 1:100 000 USGS DLGs. These coverages included a
buffer of roads in adjacent Michigan and Minnesota, allowing
us to calculate accurate distances to nearest roads and railroads
even along state boundaries. We converted the road layer to
a binary 100 m-resolution raster layer (i.e. road v. non-road),
and calculated the Euclidean distance (m) from each cell cen-
tre to the nearest road using the Spatial Analyst extension of
ArcGIS (v8.1). We then averaged the distance to nearest road
values across all cells within a given PLSS section. The same
procedure applied to railroads provided a distance-to-railroad
data layer. We used the stream density procedure to generate
road and railroad density (kmkm~2; 100-m resolution) data
layers.

Distance to nearest population centres can affect levels
of human activity (Vega-Garcia et al. 1995) and response
time for fire personnel (Cardille et al. 2001). Distances to
the nearest population centres were calculated at two popula-
tion thresholds: cities with greater than 10000 people (large

Int. J. Wildland Fire 403

cities), and cities with greater than 1000 people (small cities).
The 100 m-resolution raster layers of the Euclidean distances
from the nearest large and small city, respectively, were calcu-
lated in ArcInfo GRID, and these values were averaged across
cells within a PLSS for each variable.

Predictions

Biophysical factors listed in Table 1 are dominated by fac-
tors hypothesised to spatially influence fuel conditions. Soil
attributes from the STATSGO database influence soil moisture,
which in turn affects fuel moisture. Factors positively corre-
lated with soil moisture (i.e. available water-holding capacity
and proportion of hydric soils) should decrease the likelihood of
both starts and large fires, whereas the converse is true for soil
drainage (Table 1). Climate can similarly influence soil mois-
ture patterns across space during the fire season, so spring or
summer precipitation should negatively influence the likelihood
of both fire starts and large fires, while summer temperatures
should positively influence these same variables.

Because vegetation patterns have been heavily influenced
by human land use, we used current land cover as a surrogate
for current fuel type. For forest fires, relative forest flammabil-
ity should be positively related to the likelihood of fire starts
and large fires in forests, but should not be relevant for fires in
other cover types. We expected that agricultural and grassland
cover types would increase both fire starts and large fire observa-
tions relative to forest types, because open habitats are typically
more flammable than forests in the region (Cardille and Ventura
2001). We expected the opposite to be true for forest fires, simply
because forest fires by definition are constrained to forested land
cover. Finally, open water and streams were expected to constrain
the ability of fires to spread, and such that their relative cover-
age should be negatively correlated with the likelihood of large
fires. It is not clear how water and streams will influence igni-
tions; increased relative humidity near water should decrease the
likelihood of fire starts, but these variables are also associated
with waterfront development and recreational access that may
enhance human-caused ignition frequency.

Unlike the biophysical variables, most human variables were
expected to have opposite direction of influence on fire starts v.
large fire occurrence (Table 1), because humans both start fires
and suppress them. Hence we expected that fire starts would be
positively associated with human access and development vari-
ables (i.e. population, housing, road and railroad density), and
negatively associated with distance to infrastructure and popu-
lation centres (i.e. distance to roads, railroads, small and large
cities). All fires in the database are suppressed fires, so the most
likely human influence on fire size was (1) the time to report
a fire start; (2) the time required for fire attack crews to arrive
at the scene of a fire; and (3) road access to the fire location.
We expected that the time to report a fire should decrease with
human presence in the landscape (i.e. population and housing
density), response time should increase with distance to popula-
tion centres, and access to a fire should be positively related to
road density (Table 1). The two railroad variables should be unre-
lated to fire size because suppression resources are not sent via
railroad. We had no a priori predictions how recent development
(i.e. housing and population change from 1990 to 2000) would
influence either fire starts or fire size.
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Land ownership patterns and residential property values were
expected to have different relationships. Owing to harsh con-
tinental winters and also a high density of lakes and forests,
northern Wisconsin has some of the highest concentrations of
seasonal homes in the nation. The primary fire season occurs
in late spring (Cardille and Ventura 2001), when many sea-
sonal homes are not occupied. Hence the percentage of owner-
occupied homes is expected to positively influence the likelihood
of fire starts and negatively influence the likelihood of observ-
ing large fires, because proportionally greater human presence
should both increase ignition sources and decrease the reporting
time, respectively. The converse is expected for the percentage of
seasonal homes. Finally, economic status may influence human
behaviours related to fires (e.g. Prestemon 2006). For example,
debris-burning may be more common in less affluent areas, and
arson activity can be related to unemployment levels. We there-
fore expected fire starts to be negatively associated with median
house value.

Statistical analysis

Classification and regression trees explain the variation of a sin-
gle categorical (i.e. classification tree) or numeric (regression
tree) variable with respect to one or more explanatory variables
that can include both categorical and numeric data types (De’ath
and Fabricius 2000). They achieve this by recursively partition-
ing data into increasingly homogeneous subsets, examining all
possible variables, and then selecting the best variable to split
each ‘parent’ group into two ‘child’ groups or ‘nodes’ with the
lowest ‘impurity’, a measure of the relative homogeneity of the
resulting child nodes (De’ath and Fabricius 2000). Child nodes
become new parent nodes that are further split, and the process
continues until all of the observations are classified. Terminal
nodes are those groups formed at the end of the tree that can-
not be split any further. We applied classification tree analyses
to binary (fire v. non-fire) section observations using the recur-
sive partitioning and regression trees (RPART) library extension
(Atkinson and Therneau 2000) to SPLUS 2000 Professional
(Release 3, Mathsoft, Inc.).

The recursive nature of classification trees allows them to
capture some interactions between variables that are difficult
to reconcile using conventional linear methods (Urban 2002).
As classification trees partition data according to ranked val-
ues, they do not assume any distribution of the data, nor are
they sensitive to outliers (Breiman et al. 1984; De’ath and Fabri-
cius 2000; Karels et al. 2004). However, the partitioning method
of classification trees, when applied to continuous explanatory
variables, tends to break the data based on gaps in the contin-
uous data (J. Stanovick, pers. comm.). As gaps in the data can
be either inherent in the data or due to an insufficient number of
observations, it is best to first eliminate the gaps by binning the
data into discrete ordinal classes. Finally, unlike parametric mul-
tivariate techniques, classification tree analysis is not sensitive to
strong correlations among explanatory variables (i.e. collinear-
ity), and in fact can take advantage of collinearity by identifying
surrogate variables that can be applied in cases where an explana-
tory value is missing from a given observation (Breiman et al.
1984; De’ath and Fabricius 2000; Karels et al. 2004). Additional
insights can be gained by examining alternative splitting criteria
for a given node, defined by either a different threshold of the
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Fig. 3.  Number of fire observations by type and size grouping. ‘Gen-

eral’ fires included both forest fires and fires occurring in other land cover
types (gray + black bars), whereas forest fires included only the observations
indicated by black bars.

same variable or by a different variable (De’ath and Fabricius
2000). Four alternative splitting criteria are output by RPART
for each parent node in the tree, rank-ordered by their relative
improvement in classification for the resulting child nodes.

We created eight different classification trees reflecting the
relative likelihood of observing either fires within all cover types
(general fires) or fires that burned specifically within forests
(forest fires) within a section according to four different size
thresholds:

e all fire observations

o fires >0.4ha (1 acre)

e fires >4 ha (10 acres)

e fires >16ha (40 acres)

The number of fire observations decreased exponentially
with increasing fire size threshold, with forest fires comprising
roughly half of the fire observations within each size group-
ing (Fig. 3). PLSS sections containing fires meeting each of
the above criteria were used as independent fire observations,
and sections containing multiple fires were treated as indepen-
dent observations, essentially weighting the section according
to the number of fire observations they contained. For each set
of fire observations, we randomly selected an equal number of
sections that did not contain fires meeting the same fire size
and type criteria. Random selection of non-fire sections was
performed separately for each fire type and size combination
defined above, because the set of sections without fire observa-
tions differed among size and type combinations (e.g. a section
may contain a small fire observation, but not one larger than
16 ha (40 acres)). All continuous variables within each result-
ing dataset were binned into ordinal classes with a target size of
25 observations in each class to remove gaps in the data before
analysis. Datasets for general fires >16 ha (40 acres) and forest
fires >16 ha (40 acres) had smaller class sizes, averaging 14 and
8 observations, respectively, to provide an appropriate balance
between the number of classes and the number of observations
within classes.

A key component in classification tree analyses involves
‘pruning’ an overlarge tree to an appropriate number of splits,
where the degree of pruning depends on the added contribution
ofnew splits as well as the relative interpretability of the resulting
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tree (Breiman et al. 1984). We followed the methods of De’ath 2z
and Fabricius (2000) to select the appropriate tree size using ElzeeezSsSd -2 -ws o ==
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variable was also displayed, indicating whether increasing the ow | =
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indicating a higher proportion of rental and seasonal properties
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in forested areas. Presettlement fire rotation was also negatively
correlated with relative forest flammability, indicating that cur-
rent composition (i.e. fuel) characteristics of the forests are still
associated, in part, with biophysical constraints imposed by soil
type and landform.

Fire starts

The optimal tree size based on the 1-SE rule for general fire
observations was 306 splits (RME =0.31, CVE =0.46 £ 0.006
s.e.). The first split was defined by a housing density value of
2.09 houses km~2, where PLSS sections with housing densi-
ties greater than that value were more likely to contain fire
observations. This first split decreased the majority of the mis-
classification error (39%), suggesting that housing density was
by far the most important variable influencing general fire
observations starts (Fig. 4a). Other relatively important human
variables included road density, percentage owner-occupied
homes, and distance to railroads (Fig. 4a). Important biophysi-
cal variables included the percentage of agriculture or grassland
cover and relative forest flammability — both variables were
positively associated with fire observations (Fig. 4a).

Optimal tree size based on the 1-SE rule for forest fire obser-
vations was 35 splits (RME = 0.44, CVE=0.50+£0.009 s.e.).
Again, housing density of 4.09 houses km™2 defined the first
split and had the largest reduction in the misclassification error
(39% decrease) (Fig. 4b). Road density was the next most influ-
ential human variable and had a consistently positive relationship
with fire observations. The positive influence of forested land
and negative influence of agriculture or grassland cover reflected
the fact that fires were restricted to forests. Presettlement fire
rotation and relative forest flammability were only moderately
important predictors of forest fire observations.

Interpreting classification tree diagrams — fires
>0.4 ha (1 acre)

Classification trees are interpreted as dichotomous keys; the
decision variable is shown at each parent node, true statements
flow to the left child node. For example in the classification tree
created for general fire observations greater than or equal to
0.4 ha (1 acre) in size, the split at the first parent node was deter-
mined by the logical expression: population density <1.03 km ™2
(Fig. 5). Data meeting that criterion were less likely to be fire
observations and flow to the left child, whereas data not meeting
that criterion were more likely to be fire observations and flow
to the right child. The vertical length of each branch reflects the
reduction in misclassification rate from parent to child nodes.
In this example, the first parent node based on population den-
sity reduced the majority of misclassification error in the tree.
The left child node was split again (i.e. it became a new parent
node) based on whether the presettlement fire rotation (a relative
index) was greater than 3.27, a value near the midpoint between
very short (1) and very long (5) presettlement fire rotations.
Data meeting that criterion flowed to the left child node, which
in this case was a terminal node predicting non-fire samples.
Note that the splitting criterion for new parent nodes should be
interpreted in the context of splitting criteria higher in the tree.
In this example, the branching structure suggests that, given low
population density and a high presettlement fire rotation, there
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is a very low likelihood of observing a fire greater than or equal
to 0.4 ha (1 acre) in size. Nonetheless, ‘less than’ symbols gen-
erally indicated that the variable had a positive influence on fires
in this type and size category, and ‘greater than’ symbols gener-
ally indicated that the variable had a negative influence on fires
in this type and size category. Examining the remainder of the
tree, increasing housing density and road density appeared to
increase the likelihood of observing fires, whereas increasing
the percentage of owner-occupied homes, distance to railroads,
and percentage forest cover appeared to decrease the likelihood
of observing fires in this type and size category. The two remain-
ing variables, percentage agriculture and grasslands and August
maximum temperature, had both positive and negative relation-
ships with fire. This result may indicate a non-linear relationship.
For example, increasing agriculture and grassland cover may
increase the likelihood of fires up to a point (e.g. 76%) above
which fire risk decreases. Alternatively, it is possible that the
model simply over-fitted the data, such that short branches near
the terminal nodes may not have had any real predictive power. In
the case of August maximum temperature, we found no logical
reason to explain the change in direction of influence.

The classification tree for forest fires greater than or equal
to 0.4ha (1 acre) in size was simpler than the previous tree,
but similarly dominated by human factors (Fig. 6a). Forest fires
in this size class were positively associated with road, housing,
and population densities, in that order of importance (Fig. 6a).
Percentage agriculture and grassland cover was again negatively
associated with forest fires in this size grouping, though the
threshold value for the split was near 50%, suggesting that agri-
cultural and grassland cover types only reduced the likelihood
of forest fires when they became the dominant cover type. Sur-
prisingly, small percentages of water actually increased the like-
lihood of fires in this type and size grouping, perhaps owing to
the increased human activity and development along lakeshores.

All four classification trees described thus far shared some
common traits. First, the most influential variables were human
factors. Second, the direction of influence between most fac-
tors, either human or biophysical, and the likelihood of fire
observations was very consistent with our predictions for fire
starts (compare Table 1 with Fig. 4 and Table 5). A few excep-
tions included home ownership patterns and percentage water.
Comparison of misclassification error among the trees indicated
that error increased with decreasing sample size, as expected
(Table 6). In particular, classification trees for both general and
forest fires greater than or equal to 0.4 ha (1 acre) had difficulty
classifying non-fire observations. Nonetheless, misclassifica-
tion error for the validation data was very similar to the error
calculated for the original data, suggesting that the underlying
relationships were robust (Table 6).

Larger fires

Classification tree results for larger fires (i.e. >4 ha (10 acres)
and >16ha (40 acres) size groupings) indicated a fundamen-
tal shift in the relative importance of human v. biophysical
factors, with biophysical factors having greater influence over
the likelihood of observing larger fires (Table 5). Land cover
type strongly affected larger general fires, where increasing
agriculture or grassland cover and decreasing forest cover
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Fig. 4. Relative contribution of each independent variable, measured as the total decrease (delta) in impurity
summed across all splits for both (a) general (i.e. all) fire observations, and (b) forest-specific fire observations.
The direction of influence (i.e. positive or negative) of the variable indicates whether increasing the variable
above the threshold value deciding the split increased or decreased the likelihood of observing a fire observation.
Classification trees had (a) 306 for general fire observation and (b) 35 splits for fire observation models.

typically (but not always) increased the likelihood of observing
larger fires (Table 5). Threshold values for these two variables
were consistently low for percentage agriculture and grassland,
and high for percentage forest cover (Fig. 7a, b), possibly because

a mixture of land cover types increased fire risk. Population
density was an important variable for influencing general fires
in the largest size group, but in this case, an increase in popu-
lation density decreased the likelihood of large fires (Fig. 7b),
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Fig. 6. Classification trees for (a) forest fires >0.4 ha (1 acre), and () for-

est fires >4 ha (10 acres). Variable abbreviations are defined in Table 1, and
interpretation of the tree diagrams are described in Fig. 5.

consistent with our predictions that human development would
be negatively associated with fire size (Table 1).

Larger forest fires were primarily associated with either soil
moisture variables or presettlement fire rotation. The likelihood
of forest fires greater than or equal to 4 ha (10 acres) increased
with soil drainage and decreased with available water-holding
capacity (Fig. 6b; Table 5). The classification tree for the largest
forest fires greater than or equal to 16 ha (40 acres) had only a
single split defined by a presettlement fire rotation index value
of 2.45 (Table 95).

Discussion

Assuming that the spatial distribution of fire occurrence in the
Wisconsin fire database is an unbiased indicator of the risk of
fire starts, our results indicate that the likelihood of fire starts
is primarily influenced by human activity, whereas biophysi-
cal factors determine whether those fire starts increase to larger
fire sizes. This distinction provides insight into the interaction
between humans and the environment as it affects fire occur-
rence and size, and suggests a combination of human activity
and biophysical attributes contribute to fire risk in the region.

Human factors

Fire occurrence was overwhelmingly affected by housing den-
sity, for which population density was a close surrogate (Fig. 4).
Cardille et al. (2001) did not observe such a strong relation-
ship between fire occurrence and human population in the same
region, which may have been due in part to their focus on
fires greater than 0.4 ha (1 acre) in size. Nonetheless, the dra-
matic increase in fire observations with population and housing
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Table 5. Direction of influence of independent variables on fire observations in different size and type groupings
The direction of influence (i.e. positive or negative) of the independent variables indicates whether increasing the variable above the
threshold value deciding a split in a classification tree increased (4) or decreased (—) the likelihood of observing a fire observation in
each of six fire size—fire type groupings. Double symbols indicate a primary split explaining the majority of misclassification error

Variable GE1

GE10 GE40 GE1 GE10 GE40

Biophysical factors
Mean maximum August temperature
Available water-holding capacity (high)
Soil drainage class
Percentage agriculture and grassland
Percentage forest -
Percentage water
Stream density
Relative forest flammability
Presettlement fire rotation -
Human Factors
Population density (1990) ++
Housing density (1990) +
Housing change (1990-2000)
Percentage of homes occupied by owner -
Percent of seasonally occupied homes
Road density +
Distance to railroad -
Distance to city >10 000 people
Statistics
Number of splits 11
Relative misclassification error 0.31
Cross-validation error 0.46
Standard error 0.01

++ - +

++

8 9 6 3 1

0.62 0.36 0.64 0.63 0.62
0.78 0.83 0.72 0.74 0.93
0.03 0.07 0.02 0.05 0.12

Table 6. Classification tree validation results
Percentage of correctly classified observations by fire grouping for both model building and model
validation datasets (75 and 25% of total dataset respectively)

Fire grouping Classified Model building Model validation
fire obs. N % correct N % correct
All fire observations No 10137 85.0 3376 77.6
Yes 10150 83.8 3363 75.6
All fires >0.4 ha (1 acre) No 2410 60.0 775 56.1
Yes 2363 75.7 822 75.7
Forest fire observations No 5183 81.3 1687 79.0
Yes 5087 73.9 1783 70.3
Forest fires >0.4 ha (1 acre) No 1030 65.8 361 62.3
Yes 1037 70.1 354 67.2

development has critical implications for fire risk within the
wildland—urban interface (WUI) in this region. The WUI of
northern Wisconsin is dominated by ‘intermix’, i.e. low—medium
density rural housing developments where wildland fuels and
homes intermingle (Radeloff ez al. 20005; Haight et al. 2004).
Primary splits affecting general and forest-specific fire occur-
rence were 2.09 km 2 and 4.09 houses km 2, respectively. Given
that each is below the formal definition of WUI intermix (i.e.
6.17 houses km~2; Radeloff et al. 2005), our results suggest
that a permanent presence of people in the landscape strongly
increases the risk of fire occurrence even at low densities.
Other studies of human-caused fires in northern forest
ecosystems did not specifically evaluate the effects of human
population per se, but rather human activities associated with

roads, campsites and distance to municipalities (Vega-Garcia
et al. 1995; Pew and Larsen 2001). Neither of these Canadian
studies had the same extent of WUI intermix; hence, indica-
tors of human access to wildland fuel sources were more logical
indicators of the frequency of human observations. Our results
did show road density as an important variable predicting fire
occurrence (Figs 4, 5a). However, this variable is correlated with
housing density (o = 0.64, Table 4) and its association with fire
occurrence could be due to rural development, human access to
wildland fuels, or both.

Studies from subtropical and tropical climates suggest
that changes in fire risk associated with drought cycles can
overwhelm human effects. Prestemon et al. (2002) found lit-
tle evidence that rural development significantly affected fire
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Fig. 7. Classification trees for (a) general fires >4ha (10 acres), and

(b) general fires >16ha (40 acres). Variable abbreviations are defined in
Table 1, and interpretation of the tree diagrams are described in Fig. 5.

risk within Florida, though they acknowledge that the county-
level resolution of their analyses may have been too coarse to
detect any human effects on fires. Similarly, an analysis of a fire
database from the tropical Mexican state of Chiapas suggested
that the spatial distribution of human populations only affected
fire occurrence under extreme drought conditions controlled
by the El Niflo—Southern Oscillation (Roman-Cuesta et al.
2003); such drought cycles had similar impacts on fire occur-
rence in subtropical Florida (Prestemon et al. 2002). Although
drought cycles are typically less dramatic within northern tem-
perate forests, they do affect fire risk there (Haines et al. 1978;
Cardille and Ventura 2001). Our analyses did show that soil
types susceptible to drought (i.e. high drainage and low avail-
able water-holding capacity) increased the likelihood of both
fire occurrence and large fires (Fig. 4, Table 5). Clearly the
interactions between spatial and temporal drivers of fire risk,
such as drought, warrant further investigation in our study region
(see Study limitations and future directions below).
Classification tree results showing that fire occurrence was
positively associated with population, housing, road, and railroad
density and negatively associated with distance to railroads and
roads were consistent with our predictions that fire starts should
be associated factors indicating human presence in the land-
scape (i.e. human development and infrastructure). Yet human
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variables explained little in the large fire models — this result was
surprising because humans do have a huge influence on fire size
via suppression policies enforced throughout the state. There was
some evidence that population density was negatively associated
with the largest fires (Fig. 7b; Table 5), suggesting that isolated
homes may be more at risk from large fires, perhaps owing to
delays in fire reporting or increased response time. Nonetheless,
in general our results indicate that fire suppression activities in
the study area are probably not limited by road access, and only
somewhatrelated to the spatial distribution of rural communities.

Biophysical factors

Cardille and Ventura (2001) first documented that fires were
both more common and generally larger within non-forest cover
types relative to forested cover types in the Lake States. They
speculated that open habitats support more flammable vege-
tation and promote human access to the landscape relative to
closed forest conditions. Our results indicated that agricultural
and grassland cover (or conversely, the absence of forest cover)
was the most important biophysical variable affecting general
fire observations in all size groupings. Such cover types are also
often associated with rural housing development in the region
(Radeloff et al. 20005) that may enhance their relative ignition
rates. However, the effects of agriculture or grassland or forest
cover types were not always consistent with our expectations.
For example, the percentage of agriculture and grassland cover
types had both positive and negative influences on general fires
greater than or equal to 0.4 ha (1 acre), and the percentage of for-
est cover had a positive influence on general fires greater than
or equal to 4 ha (10 acres), despite the fact that the percentage of
agriculture and grassland had a strong positive effect in the same
classification tree (Table 5). Similarly, the percentage of agricul-
ture and grassland had a positive influence on the likelihood of
observing forest fires greater than or equal to 4ha (10 acres)
(Table 5). These results suggest that a mixture of agricultural
and forest land cover types may increase fire risk.

Presettlement fire rotation and related indicators of soil mois-
ture (i.e. soil drainage and available water-holding capacity)
had very consistent relationships with the likelihood of fires
of all types and sizes, and were the most important factors
predicting large forest fires (Table 5). This result is consistent
with earlier studies in Wisconsin and Michigan associating both
historical and current fire regimes with glacial landforms that
largely control the spatial distribution of different soil textures
(Brubaker 1975; Cleland et al. 2004; Schulte and Mladenoff
2005). Our results are also consistent with the findings of Cle-
land et al. (2004), who found that the rank order of contemporary
fire rotations was identical to that estimated for presettlement
fire rotations in northern Lower Michigan, despite the fact that
current fire suppression policies have increased fire rotations by
roughly an order of magnitude relative to presettlement periods.
Hence our results suggest that biophysical factors (principally
soil texture) affecting fire regimes in the past remain important
indicators of modern risk in the region.

In contrast, relative forest flammability was only influen-
tial for fire starts (Fig. 4), and was surprisingly absent from the
majority of forest fire classification trees (Table 5). It is pos-
sible that our interpretation of vegetation characteristics that
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influence fuel conditions and relative fire risk (i.e. Table 3) was
not accurate. Most fuel models developed in the United States
have focussed on systems further west (Andrews 1986), and
although eastern fuel types have received more recent attention
(e.g. Scott and Burgan 2005), they are still under development.
Still, the largest contemporary fires in Wisconsin are typically
associated with crown fires in coniferous systems, especially
pines (Radeloff et al. 1999), suggesting that fire risk is still asso-
ciated at least in part with current forest cover. It is more likely
that the satellite land cover classification was not precise enough
to reliably characterise vegetation characteristics most relevant
to forest fuels affecting surface fires. For example, the ‘maple’
class can contain either red maple systems, more likely to con-
tain more xeric species such as oaks, or sugar maple systems,
more likely to contain obligate mesic species such as basswood
(WISCLAND, http://dnr.wi.gov/maps/gis/datalandcover.html/,
accessed 24 July 2007). Litter decomposition and moisture con-
ditions within each of these systems are expected to be quite
different. Further, subtle differences in soil texture can have
greater influence on understorey vegetation than the dominant
tree cover (Host and Pregitzer 1991). In particular, sedges,
bracken fern and ericaceous shrubs associated with dry-mesic
forests have very different surface fire potential than succu-
lent herbs within mesic forests that rarely burn. By comparison,
the classified biophysical units (i.e. presettlement fire rotation)
better account for understorey differences associated with soil
texture. Whereas relative forest flammability was correlated
with presettlement fire rotation (Table 4), the lack of response
from the former may simply be because the latter was a better
integrative measure of fire risk.

Human-biophysical interactions

Some counter-intuitive results were likely due to interactions
among variables, and potentially seasonal trends that we did not
account for directly in our analyses. We expected the likelihood
of fire starts to increase with the percentage of owner-occupied
homes, and decrease with the percentage of seasonal homes and
with increasing distance from either large or small population
centres (‘cities’). Our classification tree results indicated the
contrary, specifically for general fires (Fig. 4a; Table 5). Exami-
nation of correlations among independent variables reveals that
these four variables were interrelated, and also related to land
cover (Table 4). Hence regions closer to population centres tend
to have more agriculture or grassland cover, a greater percent-
age of owner-occupied homes, and a correspondingly lower
percentage of seasonal homes.

Post hoc interpretation indicated that the classification
trees picked up a seasonal human—biophysical interaction that
accounts for the above discrepancy between our predictions and
results. Monthly fire occurrence and area burned shows the
fire season in northern Wisconsin begins in March and ends in
November, with April and May being the primary fire months and
moderate fire activity occurring in March, June, July and Octo-
ber (Fig. 8). Seasonal patterns of fire occurrence and area burned
were nearly identical, but open (i.e. agriculture or grassland)
and wetland fires were more prevalent in early spring. Sea-
sonal differences in the relative influence of a given independent
variable can be evaluated by averaging the variable across all
PLSS sections containing fires by month — if a variable has a

Int. J. Wildland Fire 411

(a) Fire occurrence
6000 —
o 5000 [ o Wetland [
© 4000 o Open H
S 3000 m Forest [/
o
Q2000
[T
1000 -
0 B
N S G <
\;zf\ 0,06 {Z§Q‘§‘ ?Q‘\\ ®@ §¢® B&*\ N {(\0@ <° o @‘OQ)
SRR\ S )
N ¥ S
o 9
(b) Total area burned
5000 —
— o Wetland ||
g
S m Forest
8 2000
T 1000
0 A
SSEEATINY ¢ N & L& L&
0,06 &,bd S @ 0 S &st &O@ \QQ &oe; &
& &N S
< %Q,Q S
Fig.8. Monthly summaries of (@) fire occurrence, and (b) total area burned

by the cover type in which the fires occurred.

seasonal influence on fires, we should observe a correspond-
ing change in the average monthly value of that variable for
sections containing fires. We found the percentage of agricul-
ture or grassland cover for sections containing fires was highest
early in the fire season, and lowest during the period from May
through October (Fig. 9), mirroring the seasonal trends for for-
est cover and consistent with the observed seasonal patterns of
fire types (Fig. 8). The seasonal pattern of percentage of owner-
occupied homes for sections containing fires was also depressed
during the same period, with a corresponding increase in the
percentage of seasonal homes for sections containing fires. The
above trends suggest that the seasonal residents and other visi-
tors in northern Wisconsin influenced the spatial distribution of
fire occurrence from May through October. Our classification
trees analysis apparently detected this seasonal interaction, first
accounting for the large positive influence of agriculture and
grassland on fire observations that occurred predominantly in
early spring, and then indicating an influx of fire starts associ-
ated with seasonal visitors to the region later in the fire season.
This interpretation is consistent with the observed positive influ-
ence of water on forest fires greater than or equal to 0.4 ha
(1 acre) that likely reflects enhanced ignition rates associated
with increased human development and activity along lakeshores
(Table 5). This seasonal human—biophysical interaction further
provides an alternative explanation for the inconsistent relation-
ships between agriculture or grassland cover, forest cover, and
fire occurrence (Table 5).

Study limitations and future directions

The above interactions and previous studies suggest that tem-
poral factors such as weather, seasonality, drought cycles
(Prestemon et al. 2002; Roman-Cuesta et al. 2003) and eco-
nomics (Prestemon 2006) can all influence fire risk in both space
and time. Although our results could have been improved by
incorporating temporal factors, our classification tree approach
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did not lend itself to a combined spatiotemporal analysis. This
limitation may also explain why our climate variables were gen-
erally not useful (Fig. 4; Table 5). Future work could randomly
assign dates to non-fire observations as a way to add temporal
attributes such as weather or drought (S. Saunders, unpubl. data).
Alternatively, it may be possible to first apply one analysis (e.g.
temporal), and then apply the next (e.g. spatial) on the residuals.
We suspect that this latter approach may work well for mod-
elling general trends (e.g. seasonality) but will have difficulty
addressing spatiotemporal interactions (e.g. Fig. 9).

Our results were also likely influenced by differences in the
spatial resolution of both input variables and the fire obser-
vations. For example, we found presettlement fire rotations to
be more influential than the actual soil variables. One possi-
ble explanation for this result is the SSURGO polygons from
which presettlement fire rotations were mapped were simply
more precise than the generalised STATSGO polygons used to
estimate soil attributes. Variables such as drainage class or avail-
able water-holding capacity may have been more predictive if
mapped at higher spatial resolution. Similarly, median house
value could have had greater explanatory power if it were avail-
able at the block census level (i.e. higher resolution). Further,
the spatial resolution of the fire observations was also poor (i.e.
a PLSS section). Some of the factors examined (e.g. distance to
road, current vegetation) are likely more relevant at finer spatial
scales than that allowed by the fire database. Our results should
therefore be interpreted in light of these mismatches in scale
between independent and dependent variables.

Conclusions

Our results support the use of biophysical units defined by soil—
landform—vegetation associations to identify areas of wildfire
risk in northern Wisconsin. This finding is particularly signif-
icant because several areas within these fire-prone ecosystems
are experiencing significant population growth, particularly in
the vicinity of lakes (Radeloff et al. 20005). Our analyses
suggest that fire frequency will increase with this additional
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development. Given the relatively low wildfire risk within the
broader region (Fig. 2), new residents typically have little appre-
ciation of the fire risks surrounding their homes (R. Hammer,
Oregon State University, pers. comm.). Further post hoc anal-
yses suggest that seasonal visitors, many of them from urban
centres, significantly influence fire risk in the region (Fig. 9).
We expect conflicts between the restoration of fire-prone ecosys-
tems, which will require active burning (Radeloff et al. 2000q;
Stearns and Likens 2002), and the protection of human life and
property to increase as these lands are further developed, unless
proactive steps toward protecting property in these fire-prone
regions (e.g. FIREWISE) are taken.

We also recommend that open land cover types, particularly
grasslands, should be recognised as important contributors to
wildfire risk in the region. Though the study area is primar-
ily forested, our results indicated that even small percentages
of agriculture or grassland increased the likelihood of wildfire.
Conventional wisdom that pine forests represent the greatest
fire risk can therefore be improved by including agriculture and
grassland cover types as an additional risk factor.

Finally, we emphasise that the largest, arguably most impor-
tant, fires are also rare and therefore difficult to predict. Very
large fires in the region should occur only when the right com-
bination of weather, fuel moisture, and contiguous fuels allow
the wildfire to escape human control. Understanding the drivers
underlying human fire starts, fire spread, and suppression efforts
will help restrict the future occurrence of catastrophic wildfire
events. Whereas classification tree analyses hold promise for
evaluating the complex relationships between humans and bio-
physical variables as they influence fire risk, an approach that
addresses both spatial and temporal variation in fire risk, in com-
bination with improved resolution in fire records, should ulti-
mately provide the best insight into fire risk in human-dominated
fire regimes.
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