
Water Resources and Economics 11 (2015) 1–12
Contents lists available at ScienceDirect
Water Resources and Economics
http://d
2212-42

n Corr
E-m
journal homepage: www.elsevier.com/locate/wre
Valuing water quality tradeoffs at different spatial scales: An integrated
approach using bilevel optimization

Moriah Bostian a,n, Gerald Whittaker b, Brad Barnhart b, Rolf Färe c, Shawna Grosskopf c

a Department of Economics, Lewis & Clark College, Portland, USA
b Agricultural Research Service (USDA), Corvallis, OR, USA
c Department of Economics, Oregon State University, Corvallis, USA
a r t i c l e i n f o

Article history:
Received 2 October 2014
Received in revised form
25 May 2015
Accepted 24 June 2015

Keywords:
Integrated modeling
Nonpoint pollution
Bilevel multiobjective optimization
Tradeoff analysis
Conservation targeting
x.doi.org/10.1016/j.wre.2015.06.002
84/& 2015 Elsevier B.V. All rights reserved.

esponding author.
ail address: mbbostian@lclark.edu (M. Bostian
a b s t r a c t

This study evaluates the tradeoff between agricultural production and water quality at both the wa-
tershed scale and the farm scale, using an integrated economic-biophysical hybrid genetic algorithm. We
apply a multi-input, multi-output profit maximization model to detailed farm-level production data from
the Oregon Willamette Valley to predict each producer's response to a targeted fertilizer tax policy. Their
resulting production decisions are included in a biophysical model of basin-level soil and water quality.
Building on a general regulation problem for nonpoint pollution, we use a hybrid genetic algorithm to
integrate the economic and biophysical models into one bilevel multiobjective optimization problem, the
joint maximization of farm profits and minimization of Nitrate runoff resulting from fertilizer usage. This
approach allows us to more fully endogenize fertilizer reduction cost, rather than assume an average cost
relationship. The solution set of tax rates generates the Pareto optimal frontier at the watershed level. We
then measure the tradeoffs between maximum profit and Nitrogen loading for individual farms, subject
to the solution fertilizer tax policy. We find considerable variation in tradeoff values across the basin,
which could be used to target incentives for reducing Nitrogen loading to agricultural producers under
non-uniform control strategies.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Nutrient runoff from agriculture is a leading contributor to
water quality impairment, inland eutrophication, and coastal hy-
poxia. The integration of biophysical models of these processes
with economic models of agricultural producer behavior con-
stitutes an important area of research related to nonpoint pollu-
tion policy. Examples of integrated economic and biophysical
models for agriculture include modeling the biophysical outcomes
of alternative economic scenarios [55,34] or the solution to a
single-objective economic optimization model [52,65] and linking
both single and multiobjective economic optimization models to
biophysical models in a model chain [31,38,40,70,67,46,29].

In the model chain approach, information passes only in one
direction, so that the optimal decision at any point in the chain is
constrained by any previous decisions or outcomes in the chain. A
simultaneous optimization of all objectives can inform the calcu-
lation of tradeoffs between multiple objectives. Several studies
employ genetic algorithms to simultaneously optimize multiple
).
objectives by allowing information to pass between each objective
in both directions [7,2,44,45,47]. These studies illustrate the use of
genetic algorithms to calculate the Pareto optimal frontier for both
economic and environmental objectives.

We build on the use of genetic algorithms for nonpoint pollu-
tion policy analysis by integrating a realistic biophysical model
with a detailed economic optimization model that more fully en-
dogenizes each producer's response to the search for an optimal
targeted nonpoint pollution policy. Our use of genetic algorithm
computation methods to more freely integrate the economic and
biophysical models is detailed in a related study of targeted policy
design [73].

Our approach contributes to existing work on integrated
modeling for nonpoint pollution in several important ways. First,
we include both a detailed, spatially explicit biophysical model and
a complete model of profit maximization, with minimal restric-
tions to solution values and without imposing an a priori pro-
duction technology relationship. Second, we apply an adaptive
modeling framework to allow for two-way feedback between our
economic and environmental objectives. We formulate our mul-
tiobjective optimization as a bilevel optimization problem, which
we show is amenable to the more general regulation problem
underlying much of the nonpoint policy literature. This framework
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endogenizes fertilizer usage, making economic cost endogenous
and better updating the search for an efficient allocation of ferti-
lizer reduction. The resulting policy generates a set of Pareto op-
timal tradeoffs that can be evaluated across objectives. Third, we
evaluate the resulting tradeoffs at varying spatial scales, for in-
dividual producers and for the basin as a whole.

This integrated economic-biophysical model simulates a rich
set of agent-level decisions, made in response to the Pareto opti-
mal policy, and corresponding environmental outcomes that can
be used to evaluate tradeoffs at the individual level. We examine
these decisions for a set of grass seed farms situated in the Cala-
pooia River watershed, a predominantly agricultural watershed in
Oregon's Willamette Valley. We also make use of detailed micro-
level farm production data, which further enhances the evaluation
of individual tradeoffs between farm profit maximization and
watershed Nitrogen loading.

To value these tradeoffs, we jointly model profit-maximizing
crop production and Nitrogen loading levels, simulated by the
economic-biophysical model, as outputs in a production process
using the directional output distance function [10]. In economic
production theory, the directional output distance function is dual
to the revenue function, which we exploit to derive shadow price
estimates for Nitrogen loading in the basin [5,19,20].

We find that the tradeoff between farm profit and Nitrogen
loading varies greatly across farmers in the watershed, due to
differences in farm productivity and location in the basin's hy-
drologic network. This general result is consistent with previous
studies that consider environmental heterogeneity from the non-
point pollution literature [30,53,54]. In practice, managers could
use this information to target incentives for fertilizer reduction or
reduced Nitrate runoff, such as easement payments or funding for
best management practices, to farms that have a lower opportu-
nity cost of reducing eventual Nitrogen loading in the basin.
Randhir and Shriver [48] demonstrate the potential gains from
using multi-attribute shadow price values to target restoration
incentives across a watershed.

Moreover, analysis of the tradeoff at the farm level offers a better
picture of the distribution of costs across producers in the region,
which could be added to existing information on environmental
heterogeneity. This spatial distribution may be of concern for equity
considerations and could affect the feasibility of implementing
prospective agri-environmental policies in practice. For instance,
variation in compliance costs across producers is a form of het-
erogeneity that could undermine ambient pollution policies tar-
geted at the group level [61,63]. Differences in tradeoff values at the
farm level could also help us to explain why some producers par-
ticipate in voluntary management practice programs while their
neighbors opt out, as well as identify areas where uniform policies
are likely to generate large efficiency losses [30,69,54].
2. Background on nonpoint source pollution

Information asymmetries between producers and regulators, as
well as uncertainty regarding individual emissions, complicate
nonpoint source pollution policies for agriculture [75]. As a result,
common output-oriented policy options, including Pigouvian
taxes and output quantity standards, can no longer be generally
expected to generate efficient pollution levels. Two key early in-
sights motivate much of the related literature. First, while in-
dividual emissions levels may be unknown, the use of polluting
inputs, such as fertilizer and pesticides, can be more easily ob-
served [26]. This gives rise to greater focus on input-oriented
policy instruments and extensions to management practices on
the farm [49]. Second, while farm-level emissions may not be di-
rectly observable, ambient pollution levels can be monitored at
regional receptor sites. It may still be possible to use group-level
policies directed to ambient pollution concentrations to indirectly
target individual emissions and achieve a desired pollution level
[56,57,68,61,62].

2.1. Biophysical models and nonpoint policy

Biophysical models that account for factors such as hydrology,
soil drainage, and climate, can serve to narrow the information gap
for nonpoint source pollution, by identifying the relationship be-
tween input use, nutrient runoff, and ambient concentration le-
vels. Understanding this relationship is particularly important for
policy targeting and policy tradeoff analysis.

Numerous studies link agricultural production to a biophysical
model, commonly using linear programming methods to estimate
the resulting policy tradeoffs between emissions reductions and
production value. Important innovations include the introduction
of dynamic optimization for fertilizer and irrigation timing deci-
sions [35,36,66]; the use of cost-effectiveness and the theory of
second best for policy comparison [30,37]; incorporating producer
heterogeneity [30,24,66,53,54,74]; allowing for stochastic pro-
cesses in an ambient tax scheme [56,9,32]; allowing for substitu-
tion effects in response to input-oriented policies [33,39]; and the
use of evolutionary algorithms to simultaneously optimize over
production and water quality objectives [7,2,44,45,47].

Examined policy instruments include fertilizer input taxes
[35,12,30,25,39]; quantity controls for fertilizer and irrigation [66],
irrigation fees [36]; emissions taxes [69,36]; drainage standards
[69]; emissions standards [53]; management practice standards
[54]; and voluntary-threat approaches [56,57,68,62].

Across policy instruments, spatial heterogeneity emerges as an
important factor in the relative inefficiency of alternative policy
options [30,69,53,54]. Differences in soil quality, topography, farm
productivity and location in the hydrology network affect key
determinants, such as plant nutrient uptake, drainage rates,
compliance costs and pollution transfer coefficients. In general,
uniform approaches, whether in the form of standards, fees, or
management practices, impose higher costs than alternatives that
incorporate heterogeneity in some form. We build on this area of
the literature by considering heterogeneity at the farm level, in
both the production technology and biophysical characteristics,
and then evaluating policy tradeoffs at both the farm level and for
the basin as a whole. We briefly describe the nonpoint pollution
problem in our study below, and outline our multiobjective policy
analysis framework in the next section.

2.2. Nitrogen loading in the Calapooia River Basin

Our study area, the Calapooia River Basin, lies just west of the
Cascades Mountain range, in the Oregon Willamette Valley. Agri-
culture comprises the majority of land use, and though small in size,
this watershed accounted for roughly 40% of all perennial ryegrass
production in the United States during our study period. Perennial
ryegrass production is relatively fertilizer-intensive, and this area is
known (at least locally) as the “grass seed capital of the world.”

The environmental effects of agricultural land use in the Cala-
pooia have been previously studied as part of the USDA Con-
servation Effects Assessment Project (CEAP) [15,41]. A recent Na-
tional Water Quality Assessment of the watershed identifies Ni-
trate Nitrogen as a particular concern, due to the increasing trend
of stream and groundwater concentrations in excess of human
health and aquatic life standards [41,18]. Recent sampling con-
firms that these Nitrogen concentrations vary greatly across the
basin, even for areas with over 90% of land in agriculture [41],
making this a particularly interesting case to consider for spatial
heterogeneity and policy targeting.



M. Bostian et al. / Water Resources and Economics 11 (2015) 1–12 3
3. Modeling nonpoint pollution regulation

In a recent review of the economic theory related to nonpoint
pollution, Xepapadeas [75] presents a general theoretical re-
presentation of the nonpoint pollution regulator's problem under-
lying much of the literature. In this, the regulator chooses an am-
bient tax scheme to achieve the socially optimal ambient pollution
concentration, allowing both the tax rate and emissions levels to
vary across producers. Before introducing our own extension, we
start with this general problem, given farms k K1, ,= … ,
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where , , K1α α α= … is the ambient tax scheme for emissions,
E E E, , K1= … , B Ek k( ) is the net benefit of farm k's emissions, Z is the
ambient concentration governed by the biophysical relationship,
g E E b, , ;K1( … ), b represents parameters for factors such as en-
vironmental characteristics, and D(Z) represents the value of total
damages from ambient pollution. The socially optimal ambient
concentration is Zn, so that each farm pays a tax on their increase
in the concentration level above Zn, given the emissions of other
farms, E k− . The solution tax scheme sets each farm's individual
marginal benefit of emissions equal to the total marginal damages
of emissions.

With assumed functional forms for the benefits, damages and
biophysical relationship, along with standard monotonicity and
concavity assumptions, there is a unique social optimum. In
practice, emissions are generally unobserved and the damage
function is unknown, although it is reasonable to assume that
damages increase with the ambient concentration level. The net
benefits depend on each farm's respective production technology.
and the biophysical relationship may change depending on the
spatial distribution of emissions. We address each of these in our
modeling framework below.

3.1. Bilevel multiobjective optimization problem

For empirical analysis, we begin by shifting regulation from
emissions to fertilizer use. We use farm profit for each farm's net
benefit of fertilizer use, and total Nitrogen loadings at the basin
receptor site as our ambient pollution measure. Lacking adequate
information on damage values, we do not attempt to identify the
socially optimal level of Nitrogen loading. Instead, we characterize
the joint, and often competing, objectives of farm-level profit
maximization and basin-level Nitrogen loading minimization as a
multiobjective optimization problem. These objectives are con-
strained by the farm production technology and by the biophysical
processes that determine the fate and transport of Nitrogen
through the basin. The solution includes a set of farm-level tax
schemes and corresponding fertilizer use that generate the Pareto
frontier for profit and Nitrogen loading. In practice, a policy maker
could use the resulting frontier to compare the tradeoffs asso-
ciated with alternative nutrient reduction levels.

The solution, (Zn, α⁎), to the general problem in (1) depends on
the optimizing behavior of individual firms. Similarly, in our case
the regulator's solution set of optimal tax rates and fertilizer usage
depends on the profit-maximizing behavior of individual produ-
cers. To account for this form of nested decision-making, inherent
to the problem of nonpoint regulation, we formulate the multi-
objective problem as a bilevel optimization [6]. A bilevel optimi-
zation nests one optimization inside of another, so that the solu-
tion to the outer non-nested optimization, typically referred to as
the upper level, depends on the solution to the inner nested
optimization, typically referred to as the lower level [60]. In our
case, the joint maximization of total profit and minimization of
basin-level Nitrogen constitutes the upper level while producer
level profit maximization makes up the lower level.

For tax rate t and fertilizer input xN, we represent the nested
nature of this problem in general form, following Sinha et al. [60] as
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where N denotes basin-level Nitrogen loading, π represents farm
profit, and wN is the market price for fertilizer. This bilevel opti-
mization framework allows for iterative feedback effects between
the profit-maximization and biophysical models, making fertilizer
usage endogenous, and thus, also endogenizing economic cost.

We note several important points underlying this general re-
presentation. First, the optimal tax rates and fertilizer usage for total
profit and Nitrogen loading at the upper level depend on how in-
dividual producers respond to the tax, in terms of fertilizer use, at
the lower level. The profit-maximizing fertilizer usage, in turn, de-
pends on the production technology. Second, total Nitrogen loading
at the upper level also depends on individual fertilizer usage in
response to the tax at the lower level, as well as the spatial dis-
tribution of fertilizer usage by producers in the watershed. The
spatial dynamics of fertilizer usage and Nitrogen loading are gov-
erned by biophysical processes in the basin. Third, the nested nature
of this problem, coupled with multiple production inputs and many
profit-maximizing producers, makes the solution to (2) complex.
We employ a hybrid genetic algorithm to iteratively optimize the
lower and upper levels of our problem. We explain the production
technology specification, biophysical model and genetic algorithm
solution method in more detail below.

3.2. Profit maximization at the farm level

In our economic model, each producer chooses inputs and out-
puts to maximize profit subject to the production technology and
the fertilizer tax rate policy. We use nonparametric linear pro-
gramming methods known as data envelopment analysis (DEA) [11]
to estimate the production technology and to simulate the profit
maximization decision for each farm. In the DEA representation of
the production technology, each of the K producers uses inputs
x x x, , N1= ( … ) to produce outputs y y y, , M1= ( … ). The production
technology T is defined as T x y x y, : can produce= {( ) }.

Given input prices w w w, , N1= ( … ) and output prices
p p p, , M1= ( … ), we compute the maximum profit for each farm as
the solution to
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where the variables zk, known as intensity variables in this fra-
mework, are constrained to allow for non-increasing returns to
scale. Fig. 1 illustrates profit maximization for a DEA representa-
tion of a single input/single output production technology with
three observations, a, b and c. These frontier observations also lie
on the profit lines, 1π ⁎, 2π ⁎ and 3π ⁎, which represent maximum profit
levels for input and output prices {(p w,1 1), (p w,2 2), (p w,3 3)}.

To simulate each producer's response an input tax policy, we
add a targeted proportional tax to the profit maximization model



Fig. 1. DEA profit maximization for three different price ratios.
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in (3). Each farm's objective function under the targeted tax, tk, on
Nitrogen fertilizer, the Nth input, is

p w p y w x t w x, max ,
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m m
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subject to the technology representation in (3). Here the tax rate
for each farm, tk, is multiplied by the quantity and price of the Nth
input, Nitrogen fertilizer. Note that a tax value of t¼1 is equivalent
to having no tax on fertilizer and that a given policy consists of K
different tax rates for each of the K farms. Solving this problem for
each producer allows for heterogeneity in farm-level technologies,
which underlies variation in producer compliance costs.

Much of our focus in this study lies in more fully integrating the
nested decision process in the economic model with a spatially
explicit biophysical model, in order to examine tradeoffs at both
the basin and the producer level. While farm-level tax rates on
fertilizer may not represent a very realistic policy option, we use
them in this framework as a general incentive to reduce fertilizer.
We could easily replace them with payments for fertilizer reduc-
tion, and with additional data on management practices (e.g., ve-
getative filter strips; buffer zones), we could also include multiple
policy incentives. Allowing the tax to vary at the farm-level is
analogous to varying ambient tax rates across producers. We use
them here to identify the frontier for Nitrogen reductions, based
on decreased fertilizer use. It is important to note that allowing for
multiple policy options would provide an even fuller representa-
tion of the frontier.

3.3. The biophysical model

The environmental objective in this case is to minimize Nitro-
gen loading in the basin resulting from profit-maximizing fertilizer
use. We use the Soil and Water Assessment Tool (SWAT) [3] to
specify the environmental objective. SWAT is a biophysical model
that can be used to simulate the effects of agricultural production
processes at the river basin scale [4]. The model divides the entire
watershed into subbasins, where each subbasin is further divided
into hydrological response units (HRUs), which represent unique
combinations of topography, land use and soil properties. Farm-
level production decisions in each of the HRUs can then be in-
cluded to model the spatial distribution of Nitrogen loadings
throughout the watershed.

We use the digital elevation model ArcSWAT, which adds a GIS
interface to SWAT, to input and designate land use, soil, weather,
groundwater, water use management, pond and stream water
quality data. SWAT simulates hydrology, soil erosion, plant growth,
as well as multiple fate and transport processes, including that of
Nitrogen. This framework is specifically designed to simulate the
environmental effects of agricultural production practices, thus
providing a method to test the effectiveness of agri-environmental
policy [4]. SWAT is widely used and numerous studies apply it
specifically to agri-environmental policy analysis [7,50,45]

3.4. The hybrid genetic algorithm

We employ genetic algorithm computational methods to solve
the multiobjective optimization problem for the case of a targeted
environmental policy, in this case a proportional Nitrogen fertilizer
tax. This problem is computationally intensive, but relatively easy
to implement with parallel execution [71].

A genetic algorithm (GA) is an iterative algorithm based on
retention of the best or ‘fittest’ members of a population until a
stopping condition is satisfied [27]. In an optimization application,
the GA consists of an initial randomly generated population that is
evaluated for fitness using an objective function, a test for con-
vergence, and application of the GA operations of selection,
crossover and mutation. These elements are followed iteratively
until an optimum is obtained.

Although GAs generally find promising solution regions
quickly, convergence to an optimum can be much slower. In re-
sponse, a hybrid genetic algorithm (HGA) model adds a local
search method to speed convergence [59]. Fig. 2 adapts the more
general explanation of genetic algorithms from Goldberg [27] to
illustrate the HGA used to solve our maximum-profit and mini-
mum-Nitrogen loading problem in this case.

We use the non-dominated sort genetic algorithm (NSGA-II)
[16] to assign a fitness value to each individual in the GA popu-
lation, based on the evaluation of the individual for each objective.
The result is an estimate of the Pareto optimal set of our objectives,
farm profit and Nitrogen loading, at convergence. In our case, a
linear program for the DEA model is solved in the evaluation step,
which limits the space that is searched by the GA. The DEA results
are then passed to NSGA-II, which finds the set of values available
across the Pareto optimal frontier. It is important to note that this
HGA uses information from both the economic and environmental
models used in the integrated simulation of the tax policy during
the optimization. Whittaker et al. [73] provide more computa-
tional details on implementing the HGA.
4. Evaluating the individual tradeoffs

We specify the HGA to maximize total basin-wide profit while
also minimizing total basin-wide Nitrogen loadings. However, in-
dividual tax rates are applied to each farm. Therefore, for this
targeted tax policy, it is also important to understand the tradeoffs
that exist for individual producers. To evaluate the tradeoff be-
tween Nitrogen loading and crop production at the farm level, we
first calculate each farm's share of total basin Nitrogen loading as a
function of their fertilizer application rate and HRU location. We
then use a directional distance function approach to model in-
dividual Nitrogen loading as an undesirable output, produced
jointly with the desirable output, crop production.

4.1. The underlying theory

We let P(x) denote the feasible output set for the vector of farm
outputs y y y, , M1= ( … ) and undesirable outputs u u u, , J1= ( … )
given inputs x x x, , N1= ( … ), so that



Fig. 2. The hybrid genetic algorithm.

Fig. 3. The directional output distance function for desirable output, y, and un-
desirable output, u.
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P x y u x y u, : can produce , . 5( ) = {( ) ( )} ( )

In this case, y represents each farm's crop production output, u its
Nitrogen loading and x the vector of inputs, including acreage,
labor, equipment and fertilizer.

Wemake the standard assumption that P(x) is compact and convex,
acknowledging that output is scarce and thus, tradeoffs exist at the
frontier. We also assume that good and bad outputs are weakly dis-
posable, which allows for their proportional scaling up or down over P
(x), meaning that for y u P x y u P x, and 0 1, ,θ θ θ( ) ∈ ( ) ≤ ≤ ( ) ∈ ( ). We
relax the usual assumption of null jointness, that if
y u P x u y, and 0, then 0( ) ∈ ( ) = = , due to its violation in practice by
one of the farms in our study. Given these assumptions, we use the
directional output distance function to represent the feasible output set
[10], as well as individual measures of performance. Fig. 3 illustrates
the feasible output set for the joint production of good and bad output
and the directional output distance function, defined as

D x y u g g y g u g P x, , ; , max : , , 6O y u y uβ β β
→

( ) = { [( + − )] ∈ ( )} ( )

where R Rg g,y
M

u
J( ∈ ∈ )+ + is a directional vector that specifies the

simultaneous expansion of desirable output and contraction of
undesirable output. This model measures each observation's dis-
tance, in a particular direction, to the production frontier. Thus, for

observations on the frontier, D x y u g g, , ; , 0O y u
→

( ) = , and for any

observation below the frontier, D x y u g g, , ; , 0O y u
→

( ) > . Individual
performance deteriorates with distance to the frontier, so that the
directional output distance value can be interpreted as a measure
of inefficiency for each observation.

The directional output distance function can be used to account
for the undesirable nature of some outputs of a production pro-
cess, in this case Nitrogen loading, by specifying a negative di-
rection for those outputs [13]. This enables the simultaneous ex-
pansion of desirable output and contraction of undesirable output
in the measurement of performance. The properties of the
directional output distance function follow from the assumptions
made to characterize P(x), and include Representation, Mono-
tonicity and Translation. Chambers et al. [10] prove these proper-
ties for the input oriented case and we outline their use for esti-
mation purposes in the next section.

We use this model to construct the feasible output set for crop
production and Nitrogen loading, which allows us to measure the
physical tradeoffs for individual producers in the watershed. Given
the market value of grass seed, it is also possible to value these
tradeoffs in monetary terms [20,21,8] by exploiting the duality
that exists between the directional output distance function and
the revenue function:
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prices corresponding to u. By definition,
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and this, along with the definition of the directional output dis-
tance function from (6) and the representation property, implies
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The directional output distance function can then be recovered
from the right-hand side in (10) as the solution to
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The vector of shadow prices is derived by applying the envelope
theorem to (11), so that
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and
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The shadow price ratio values the tradeoff in relative terms
between the desirable and undesirable output. If at least one of the
outputs ym in P(x) is marketed, in this case crop production, the
shadow price of the nonmarketed undesirable output, in this case
Nitrogen loading, can be recovered in absolute terms as
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We note that in this application, the desirable output, crop
production, is measured in terms of total sales, so that a unit of
output is $1.00. This normalizes the price of output, pm, to equal
$1.00 as well.

4.2. Estimating the tradeoffs in practice

To compute the marginal effects and shadow prices of each
output in practice requires parametrization of the output frontier.
In choosing a functional form for that parametrization, we are
guided by the properties of the directional output distance func-
tion. Only two forms are known to satisfy the translation property,
and of these, only the quadratic form contains the first order
parameters necessary to compute marginal effects [21]. More re-
cently, Färe et al. [22] use Monte Carlo simulations to demonstrate
the ability in practice of the quadratic directional output distance
function to characterize the output set. The quadratic (also as in
[1]) directional output distance function [19,20] is estimated as
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We estimate the quadratic directional output distance function
as a constrained linear programming problem, choosing the
parameters to minimize each observation's distance to the frontier.
The solution to this problem, the optimal parameter values and
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of the production technology. Färe et al. [19,20] outline the asso-
ciated technology constraints in more detail.

5. Empirical application

We apply the bilevel multiobjective optimization framework
outlined above to a set of 87 real grass seed farms in the Calapooia
river watershed, a tributary of the Willamette river basin west of
the Cascades Mountain range in Oregon. These farms are situated
in the lower portion of the watershed, which has a drainage area
of 682 km2. The vast majority of the watershed is used for agri-
cultural crop production (83%) with virtually all of this in grass
seed farming. This is followed by hay/pasture/range areas (12%).
Wetlands, water bodies and urban areas comprise the remaining
(5%) watershed area.

5.1. The SWAT model

We use the SWAT model to divide the study area into 381
subbasins and 533 HRUs. We calibrated the SWAT model with daily
streamflow data at the basin outlet near Albany, OR, obtained from
the U.S. Geological Survey (USGS) National Water Information Sys-
tem (NWIS) website (http://nwis.waterdata.usgs.gov/nwis/dis
charge). We obtained the 10-m DEM used to delineate the wa-
tershed from the Regional Ecosystem Office (http://www.reo.gov/
reo/data/DEM_Files/indexes/orequadindex.asp). We used soil data
from the SSURGO state soil geographic database for Oregon, ob-
tained from the U.S. Department of Agriculture (USDA) Natural
Resources Conservation Service (NRCS) (http://soils.usda.gov/sur
vey/geography/ssurgo/), land use data from the USGS National
Water Quality Assessment (NAWQA) program (http://or.water.usgs.
gov/projs_dir/pn366/landuse.html), and climate data from the
Oregon Climatic Service (OCS) (http://www.ocs.oregonstate.edu).
We calibrated the model using the automatic calibration method
described in Confessor and Whittaker [15] and Whittaker et al. [72].
Fig. 4 depicts the Calapooia watershed stream system. Our analysis
focuses on the lower portion of the river basin, between the Holley
and Albany weather stations. Beyond Holley, the upper watershed
extends into the Cascades Mountain range, an area unsuitable for
the type of intensive agricultural production studied here.

5.2. The Pareto optimal tax policy

Due to USDA confidentiality restrictions, agricultural policy
studies commonly model the decisions of a representative farm,
and are applied to aggregated production data. The USDA National
Agricultural Statistics Service (NASS) granted us access to detailed
farm-level records from the 2002 Census of Agriculture with the
confidentiality restriction that the data could only be accessed
from NASS computers.

The HGA requires parallel computation, and could not be run
using available NASS computing capability. To maintain the con-
fidentiality of individual producers, we constructed a synthetic
data set from the original records for application of the economic
model. Fully synthetic data sets are constructed by multiple im-
putation [51] of all observations for all variables in the data set,
and are generally considered protection against disclosure of
confidential data. Bayesian networks provide a useful method for
imputation and creation of synthetic data sets, particularly in high
dimensions [64,17].

The estimated Bayesian network satisfies the confidentiality
restrictions and can be copied to non-secured computers. We
construct the synthetic microdata for use in the profit maximization
model using constrained draws from the Bayesian network. Our
constructed synthetic microdata has the same statistical properties
as the original census records and protects the confidentiality of the
individual producers. The synthetic data were also shown to gen-
erate the same results for the profit maximization model, which can
be run in isolation using NASS computers, as the original census
records. Table 1 provides descriptive statistics for the input and
output data listed in expenditure and revenue form, with the ex-
ception of acreage. We note that producers in our sample do not

http://nwis.waterdata.usgs.gov/nwis/discharge
http://nwis.waterdata.usgs.gov/nwis/discharge
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http://www.ocs.oregonstate.edu


Fig. 4. The SWAT delineation of the Lower Calapooia watershed.

Table 1
Descriptive statistics for the Calapooia synthetic microdata.

87 Obs.a Mean Min Max Std. Dev

Crop sales ($) 731,800.63 7744.39 3,404,889.01 591,995.20
Acres 1715.48 27.54 6972.44 1370.35
Labor 112,772.43 241.37 484,628.39 101,673.74
Fertilizer 92,911.99 6524.38 342,890.26 72,011.17
Seed 16,903.00 4.58 104,308.10 21,278.89
Chemicals 60,243.97 27.21 565,094.90 90,974.07
Fuel 25,720.85 283.84 169,372.22 27,747.60
Utilities 13,392.67 0.00 82,088.85 14,950.13
Maintenance 43,410.06 21.20 159,912.51 37,177.90
Other expenses 204,159.40 8411.60 716,892.97 154,316.76

a Note, all input data with the exception of acreage is listed in expenditure form.
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typically employ irrigation, as the growing season for perennial rye
coincides with the annual rain season in the Willamette Valley,
which can often last from October to May.

According to NASS records, Nitrogen fertilizer sold for $191/ton
in 2002, which implies that farms in our sample applied roughly
486.5 tons of fertilizer on average. Using the most commonly ap-
plied 46–0–0 N-concentration, for a farmwith average acreage and
fertilizer expenditure, this translates to roughly 260 lbs Nitrogen
per acre. This value exceeds local agricultural extension re-
commendations for annual N application to perennial rye in the
Willamette Valley, which ranged from 120 to 160 lbs during our
study period [28]. We also note that reported fertilizer use is
skewed toward upper end values in our sample. This intensive rate
of fertilizer application further highlights the policy concern for
Nitrogen reductions in the basin.

For the targeted tax policy solution HGA, we set up a popula-
tion of 200 individuals (the number of cluster nodes). Each in-
dividual genome consists of 87 targeted tax rates, one for each
farm in the watershed. The tax rate values range from 1 to 10, so
that the optimal tax payments could range from 0 to up to 9 times
the total fertilizer expenditure for a given farm. The HGA runs and
tests the fitness of different individuals for their ability to si-
multaneously optimize both environmental and economic objec-
tives. After several thousand generations, only the fittest solutions
are retained. These resulting non-dominated solutions approx-
imate the Pareto optimal frontier.

Fig. 5 depicts the Pareto optimal frontier for Nitrogen Loading
and Profit at the basin level, summing over all 87 farms for the 200
individual candidate solutions to the targeted tax policy HGA. We
summarize the Pareto optimal tax rates in Table 2. The curvature
reflects the changing tradeoffs facing policy makers at the basin
level, in choosing between alternative tax schemes. The frontier
indicates that reductions to Nitrogen loading below approximately
1.025 (�107) correspond to substantially greater profit losses,
compared to equal reductions from higher Nitrogen values. Like-
wise, reductions to loading levels above 1.15 impose relatively low
profit losses.

Not surprisingly, solution tax rates steadily decrease with
increasing Nitrogen and profits, but also at a decreasing rate. For
Nitrogen loading levels between 1.000 and 1.025, average tax rates
range from 3.11 to 5.86, while between 1.025 and 1.050, they range
from 2.47 to 3.11. in the mid-region of the frontier, between Ni-
trogen levels of 1.05 and 1.15, average solution tax rates range from
1.38 to 2.52, while for loadings greater than 1.15, they range from
1.06 to 1.56. Important for policy decisions, these solution values
suggest that over much of the frontier, relatively minor tax in-
creases could generate considerable reductions to Nitrogen loading
at proportionately lower costs to basin profits. We could also use
these results, along with additional information on the social costs
of Nitrogen loading to determine the optimal level (or range, de-
pending on precision) of Nitrogen for the basin. In the absence of
known costs, understanding the sensitivity of loading and profit
losses to alternative prospective tax rates at different loading levels
could also be useful for setting a policy goal for loading in the basin.

We illustrate the spatial distribution of the solution tax rates
over different regions of the Pareto frontier in Fig. 6. Moving
clockwise from the top left, regions I, II, III, and IV correspond to
Nitrogen loadings lower than 1.000, between 1.000 and 1.025,
1.025 and 1.050, and greater than 1.050, respectively. The different
shaded areas correspond to zip code areas in the basin, and grow



Fig. 5. The Pareto optimal frontier for the targeted tax policy.

Table 2
Calapooia simulated microdata and distance results.

17,400 Obs. Mean Min Max Std. Dev

Acres 1715.47 27.54 6972.40 1362.48
Labor expenditures 112,772.43 241.37 484,628.39 101,090.62
Other expenditures 363,829.96 19,981.10 977,014.99 232,010.46
Fertilizer (tons) 253.83 0 8928.30 374.89
Crop sales 734,068.28 0.47 2,834,500 573,605.17
Nitrogen loading (lbs) 128,978.06 0 3,462,393.05 162,294.89
Distance 0.62 0.00 5.20 0.38
Tax rate 2.03 1 10 1.90
q elasticity 0.98 0.00 3.01 0.42
q price 5.58 0.00 17.11 2.39
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darker with increasing average solution tax values. Not surpris-
ingly, we find that areas closest to the mouth of the basin in Al-
bany, where final loadings are measured, and areas along the main
branch of the stream system, tend to have the highest solution tax
rates, across regions of the frontier. Next, we examine variation in
solution tax rates across the Pareto frontier, at the farm level.

5.3. Farm level tradeoff results

The targeted tax policy HGA generates the Pareto optimal tax
rate and corresponding profit-maximizing production decisions and
Nitrogen loading for each of the 87 farms in each of the 200 frontier
solution tax schemes from the HGA computation. This yields a data
set of 17,400 simulated observations. For this second stage of ana-
lysis, where the profit-maximizing input and output quantities have
already been chosen, we also combine some of the inputs to reduce
the number of parameters that must be estimated.

For computational purposes, we convert each observation's
input and output level to a mean-weighted amount. Weighting
each input and output by its respective sample mean insures in-
dependence of unit of measurement [58] and corrects for differ-
ences in scale.

Thus, the distance value for a hypothetical observation at the
mean can be interpreted as the percent increase in desirable
output ym

k and decrease in undesirable output uj
k required to

reach the corresponding point (ym
k⁎, u j

k⁎) on the output frontier. The
marginal effects of each output can then be interpreted as percent
changes in inefficiency, so that the shadow price ratio provides a
measure of the elasticity of the tradeoff between crop sales and
Nitrogen loading for each producer. The simulated microdata,
Pareto optimal tax rates, directional output distance function re-
sults and Nitrogen loading shadow price ratios are summarized in
Table 2.

The average Pareto optimal tax rate from the HGA is 2.03 times
the price of fertilizer. We note that the minimum and maximum
tax values reflect imposed tax bounds, which were specified for
two initial tax schemes in our HGA population. While our results
indicate solution values at the lower bound of 1 for a number of
farms in the basin, we find a solution value at the upper bound of
10 for just one of the farms. In practice, upper-extreme tax values
are likely infeasible, but they could be used to target other policy
incentives, including payments for land retirement or the con-
struction of riparian buffers.

The market price of fertilizer in this study is $191 per ton,
making the average Pareto optimal fertilizer cost equal to roughly
$380 per ton. Profit-maximizing fertilizer application decreases
substantially, falling from an average of 486.6 tons per farm to an
average of 253.8 tons per farm under the tax policy. While crop
sales decrease for more than half of the farms in our sample under
the tax policy, average crop sales increase slightly, from roughly
$732,000 to $734,000 per farm. This is due to a shift in optimal
production intensities under the tax policy and our estimate of the
production technology for the basin.

To provide additional context for these results, in 2013 the state
of California considered a fertilizer tax policy to reduce Nitrate
loading to groundwater and fund improvements to drinking water
supplies. While this tax ultimately did not pass, Mérel et al. [39]
use a bioeconomic model and positive mathematical programming
to simulate the effects of proposed taxes between $100 and $180
per ton at the regional level. Using input shadow prices to calibrate
substitution elasticities, they find that intensive margin effects
(reduced fertilizer use per acre) account for much of the beha-
vioral response.

In terms of production efficiency, the distance value of 0.62
suggests that, on average, producers in the basin could increase
their crop sales and decrease their Nitrogen loading by 62% from
mean levels, based on the production levels of other farms in the
basin. For a hypothetical observation at the mean, this corresponds
to a feasible reduction of roughly 80,000 lbs of Nitrogen loading
and an increase of roughly $450,000 in crop sales. We caution that
differences in location within the basin stream system, as well as
unobserved differences in soil quality, may be driving these rela-
tively high estimated inefficiencies.

Along the frontier, the tradeoff between crop sales and Nitro-
gen loading, measured in elasticity form, is close to one on aver-
age. This implies that, on average, a one percent reduction in Ni-
trogen loading (from mean levels) corresponds to a one percent
reduction in crop sales (from mean levels). To convert this value to
monetary terms,
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The desirable output, grass seed sales, is measured in dollars, so
that the price for an additional dollar of grass seed sales, p, is
normalized to equal $1.00. Thus, the average estimate for the
shadow price of Nitrogen loading, q, in monetary terms is $ 5.58
per lb, and q ranges from 0.00 to $17.11 per lb across individual
producers. These values should be interpreted with caution, par-
ticularly given that they are derived from simulated outcomes.
They do however shed some light on the possible range of values
for Nitrogen loading in the basin, as well as how these values vary
across the farms. We also note that shadow price values for Ni-
trogen loading, as opposed to reductions in fertilizer use, could be
used to inform ambient emissions schemes, such as group vo-
luntary-threat approaches and pollution permits, as well as iden-
tify critical areas for management practice adoption.

Fig. 7 illustrates the distribution of estimated tradeoff elasti-
cities, which lie between 0.5 and 1.5 for the majority of



Fig. 6. Spatial distribution of solution tax rates for frontier regions I–IV.
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observations in our sample. For relatively inelastic observations, a
one percent reduction in Nitrogen loading corresponds to more
than a one percent reduction in crop sales. The opportunity cost of
reductions to Nitrogen loading is greatest for these farms under
the tax policy. Several factors could explain a more inelastic tra-
deoff. These farms may be situated on more productive land in the
basin, on land where applied fertilizer is less apt to run off due to
gradient conditions, or they may also be located at a point in the
stream network where runoff has less of an effect on basin-level
Nitrogen loading.

These results on variation in tradeoffs at the farm level high-
light the potential for inefficiency under uniform control policies,
consistent with previous findings in the literature. For instance, in
a comparison of nonpoint pollution control strategies for the
Neuse River basin in North Carolina, Schwabe [54] finds that for a
30% basin-level reduction to Nitrogen loadings, uniform reduc-
tions result in control costs of more than three times the least-cost
solution, while a uniform vegetative filter strip policy increases
those costs even further. He also finds that considerable variation
in acreage responses at the county level to three common man-
agement practices, controlled drainage, vegetative filter strips, and
reduced tillage. He attributes much of this variation to environ-
mental heterogeneity, namely differences in soil type across
counties, affecting both yield levels and nutrient uptake. Ulti-
mately, the state implemented a plan that sets a uniform 30% re-
duction goal, but allowed for county-level management strategies
that currently include a combination of fertilizer reductions, crop
rotation, and management practices [42]. The mix of strategies
varies across counties, depending on crop type, soil differences,
and farm size, and primary management practices include buffer



Fig. 7. Distribution of nitrogen loading shadow price elasticities.
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strips and managed drainage.
In the Calapooia, the primary management practices under

consideration by the USDA CEAP program are conservation tillage
and riparian buffers. Moving from farm-level to more realistic
regional targeting, the spatial distribution in Fig. 6 suggests of-
fering additional incentives for these practices to areas near the
mouth of the watershed and along the main branch of the stream
network. Information on the distribution of elasticities in Fig. 7
could be used to further tailor incentives, by better understanding
the level of heterogeneity among producers within each region.
6. Conclusion

The tradeoff between agricultural production and water quality
is widely acknowledged. The effectiveness of any policy incentive
to address this problem depends not only on how farmers re-
spond, but also on the physical relationship between their pro-
duction activities and the surrounding watershed. This linkage
between producer behavior and the environment has long been
acknowledged, particularly for soil condition [69,54] and stream
flow [43,54]. Recent computational advances in bilevel multi-
objective optimization [60] allow for more detailed two-way
model integration in the simultaneous consideration of both
objectives.

The ability to account for feedback effects between producers,
the environment, and the regulating authority adds to the tool set
for nonpoint pollution policy analysis. In this study, we take just
such an integrated approach by employing a hybrid genetic algo-
rithm to solve for an optimal tax policy that jointly maximizes
agricultural profit and minimizes basin-level Nitrogen loading. Our
framework advances the integrated economic and biophysical
literature by incorporating realistic models of both farm produc-
tion and the basin hydrology, by more freely optimizing over both
objectives, and by fully endogenizing economic cost without im-
posing an a priori production technology. More generally, bilevel
optimization accommodates the often nested nature of the reg-
ulation problem for nonpoint pollution. We believe that this offers
a useful tool for solving this problem in practice.

We use our framework to better understand the tradeoffs that
result at both the basin level and the farm level under a pro-
spective fertilizer input tax policy. Working with a set of grass seed
farms from Oregon's Calapooia River watershed, we estimate an
average shadow price of $5.58 per lb for Nitrogen loading, pro-
viding information on the cost to farmers of decreasing current
loadings in the basin. We also find that this tradeoff varies across
farms, from relatively elastic for some to relatively inelastic for
others. The distribution of tradeoff values likely depends on
several factors, including differences in farm productivity, soil
quality, topography, and location in the basin's hydrological net-
work. This spatial heterogeneity suggests the need for more
adaptive, non-uniform management policies [30,69,53,54] in
conjunction with the fertilizer tax, such as incentives for the use of
best management practices on more productive working land and
taking some marginal, or critically located land out of production
altogether. The distribution of tradeoff values would also likely
affect the feasibility of implementing these policies in practice. For
instance, a policy that concentrates Nitrogen reduction costs
among producers in one are of the basin may be less feasible than
one that would spread costs more evenly across the watershed.
Individual tradeoff values could be used to assess the distribu-
tional implications of prospective agri-environmental policies,
which may determine the efficacy of group-based policies [61,63].

While our results at the farm level underscore the importance
of spatial heterogeneity, our results at the basin level suggest the
potential to substantially reduce total Nitrogen loading within a
relatively narrow range of total profit losses. In practice, policy
makers often lack sufficient information on nonuse values for
water quality to set a socially optimal ambient pollution objective.
Information on the tradeoffs associated with various prospective
reduction amounts could be used to instead set an objective range
of ambient pollution levels. Also, while it may not be feasible to
fully account for spatial heterogeneity by targeting incentives at
the farm level, information on spatial heterogeneity could inform
more realistic regional targeting, for instance at the county level
[53,54], or the designation of priority areas.

We also note several limitations of this study. Perhaps most
importantly, we focus on a single fertilizer reduction policy. A
more realistic analysis would consider a range of policies to ad-
dress Nitrogen loading, including best management practices and
land retirement [44,29]. Allowing for more policy options would
likely lower the overall cost of Nitrogen reduction [23,14]. We
emphasize that our bilevel optimization framework does not
preclude multiple policies. With additional data on management
practice adoption for the production technology, one could add
multiple policy incentives to the nested profit maximization pro-
blem and use SWAT to model their physical effects. Here we focus
on the overall framework to endogenize policy response, and leave
the question of multiple policies for a separate application. We
also do not attempt to estimate the causal determinants of tradeoff
differences across farms. Likely determinants include on-farm
practices, topographical characteristics and location in the basin
system. A better understanding of how these factors affect tradeoff
differences would also be useful for targeting policies in practice.

While our application focuses on a small agricultural watershed
in the Pacific Northwest, this framework could be adapted to
analyze nonpoint pollution tradeoffs for larger and more policy-
relevant watersheds, in both the U.S. and internationally. It is also
possible to expand the analysis to include additional environ-
mental objectives, such as biodiversity measures or water flow by
using an integrated HGA approach. We are interested in adapting
this framework to model changing environmental tradeoffs over
time, in response to a variety of factors, including efficiency and
technology change, prospective agri-environmental policies, and
projected climate change.
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