Competitive relationships between invasive plants and grasses partially regulate plant community response to invasive plant management. For example, the change in grass biomass production that results from invasive plant control and the change in invasive plant biomass that results from grass seeding partially depend on competition intensity. Therefore, incomplete understanding of competitive relationships will result in imprecise predictions of management-induced shifts in invasive plant and grass abundances.

Developing a more complete understanding of competitive relationships between invasive plants and grasses requires knowing if these relationships vary temporally and/or spatially. If competitive relationships between invasive plants and grasses do vary temporally and spatially, a substantial portion of this variation is likely related to temporal and spatial variation in plant productivity, which can be attributed to variation in environmental conditions such as nutrient and water availability (Grime 2001).

While it has been shown that some aspects of plant competition do vary with environmental conditions (Moloney 1990, Briones et al. 1998, Keddy et al. 2000), the relationship between competition intensity and plant productivity has been a point of contention between ecologists (Grime 1973, Newman 1973, Reader et al. 1994). Grime (2001) believes the preponderance of evidence indicates a positive relationship between competition intensity and plant productivity. However, at least one elaborate study suggests that wide productivity gradients are necessary to detect changes in competition intensity, and therefore variation in plant productivity might not strongly influence competition intensity within the productivity range that a single invasive plant species occupies (Reader et al. 1994).

Water availability often governs plant productivity in the semiarid regions where many invasive plants occur, and water availability varies with precipitation and soil water-holding characteristics (e.g., very coarse soils maintain less plant-available water; Bailey 1979). The ability of soil to hold water is regulated by soil type, landscape position, and soil management practices, among other factors (Afyuni et al. 1998).
If plant productivity (i.e., water availability) influences competition intensity between grasses and invasive plants in semiarid regions, per-unit-biomass competitive relationships will vary temporally and spatially with plant-available soil water.

Per-unit-biomass competitive relationships can also vary by species, and a single invasive plant species can grow in association with different grasses within each of several habitat types it infests. For example, spotted knapweed (Centaurea maculata) grows in association with western wheatgrass (Agropyron smithii), Kentucky bluegrass (Poa pratensis), needle-and-thread (Stipa comata), blue grama (Bouteloua gracilis), crested wheatgrass (Agropyron cristatum), rough fescue (Festuca scabrella), blue-bunch wheatgrass (Pseudoroegneria spicaturn), prairie junegrass (Koeleria cristata), Idaho fescue (Festuca idahoensis), and other grasses (Fay et al. 1991, Sheley et al. 2000). Studying competitive relationships between spotted knapweed and each of these grasses would require resource-intensive experiments. The number of by-species competitive relationships that need to be estimated will further increase if per-unit-biomass competitive effects vary considerably by species because some regions harbor many invasive plant species. Using a small number of grasses to study the magnitude of variation in by-species competitive effects will elucidate the quantity of species-specific inquiries needed to understand competition between an invasive plant species and all grasses with which the invasive plant commonly coexists.

Our objective was to determine the influence of soil water on competition among leafy spurge, Kentucky bluegrass, and western wheatgrass in a greenhouse. Leafy spurge is a cool-season, nonnative, perennial invasive plant that infests close to 1.2 million ha in 29 states in the USA (Lajeunesse et al. 1999). Kentucky bluegrass is a cool-season, nonnative, perennial grass that occurs throughout much of the United States. Western wheatgrass is a native, cool-season, rhizomatous, perennial grass that occurs in many rangeland ecosystems of the western United States and Canada (Taylor and Lacey 1994). These grasses often grow in association with leafy spurge.

It was hypothesized that per-unit-plant-abundance competitive relationships would not vary (1) by grass species and (2) with the number of water applications (i.e., plant productivity). Because the factors that limit plant growth are different at varying levels of water availability, we hypothesized that (3) the magnitude of variation in competitive relationships would change with water availability. If observed, this change would reflect different magnitudes of variation in the underlying factors that limit plant growth (e.g., soil nutrient availability) at different levels of soil water.

MATERIALS AND METHODS

Procedures

Plastic pots (7.6-L) were filled with a pasteurized soil mixture containing equal parts of a silt loam soil (classification unknown), washed concrete sand, and Canadian sphagnum peat moss. The wetting agent Aquagro® 2000 G was added at 0.5 kg · m⁻³, and the mixture was steam pasteurized at 80°C.

Percent germination of leafy spurge, Kentucky bluegrass, and western wheatgrass was estimated by sowing 30 seeds of each species in 1-L pots in a greenhouse (1 pot per species). Seeds were covered with approximately 2 mm of soil, and the soil was misted with water every other day for 20 days. We then calculated the following ratio for each type of seed: seedlings emerged:seeds planted. These ratios were used to adjust seeding rates and achieve target plant densities.

Target densities were 0, 670, 1340, and 2010 plants · m⁻² for each species. Three addition series matrices consisting of all possible seed density combinations were established (4 Kentucky bluegrass densities × 4 western wheatgrass densities × 4 leafy spurge densities = 64 pots per density matrix × 3 density matrices = 192 pots per experiment) in the 7.6-L pots (Spitters 1983). These density matrices also contained between 2 and 8 isolated plants of each species (depending on survival).

Density matrices were arranged in a completely randomized design in a greenhouse. Pots were periodically rearranged to average the influence of environmental gradients across all plants. Greenhouse photoperiod was extended to 14 hours with 1000-W metal halide bulbs, and temperature was maintained at approximately 22°C during the light period and 18°C during the dark period. Seeds were uniformly scattered over the soil surface and covered with about 2 mm of soil. To encourage
germination, we misted the soil surface with water every other day for 27 days. After the misting period (28 days after planting), all pots were watered to capacity. Pots in 2 density matrices were watered to capacity 61 days after planting, and 1 of these matrices was watered to capacity a 3rd time 94 days after planting. Hereafter, pots watered once, twice, or 3 times will be said to have received dry, intermediate, or wet treatments, respectively. After receiving final water applications, plants in the pots were harvested by clipping at the soil surface upon showing signs of severe water stress, or 127 days after planting, whichever occurred first. All plants were then dried to a constant weight at 50°C. The experiment was conducted during the winter of 1999 (run 1) and was repeated during the winter of 2000 (run 2).

Soil Water Sampling

To determine gravimetric water content, pots were weighed the day before each watering, and pots that were watered were reweighed the day after watering. Pots were weighed after harvest, and soil was removed and thoroughly mixed. We took a uniform sample from each pot, each of which was weighed, dried to a constant weight at 50°C, and reweighed to determine soil dry weight (soil dry weight = post-harvest soil weight × sample dry weight / sample wet weight – pot weight). Two soil samples were submitted to the Montana State University Soil Testing Laboratory where pressure plate analysis was used to determine gravimetric water content at matric pressures of 0.01, 0.03, 0.1, 0.5, and 1.5 MPa.

Plant Data Analysis

Plant data were fit to the following inverse yield models by minimizing the sum of squared errors (Spitters 1983).

\[
\begin{align*}
1/p_{wls} &= B + B_{ls,den} * den_{ls} + B_{kb,bio} * bio_{kb} + B_{ww,bio} * bio_{ww} \\
1/p_{wkb} &= B + B_{kb,den} * den_{kb} + B_{ls,bio} * bio_{ls} + B_{ww,bio} * bio_{ww} \\
1/p_{www} &= B + B_{ww,den} * den_{ww} + B_{ls,bio} * bio_{ls} + B_{kb,bio} * bio_{kb}
\end{align*}
\]

Inverse plant weight was used to linearize relationships. The subscripts ls, kb, and ww denote leafy spurge, Kentucky bluegrass, and western wheatgrass, respectively. The response variable 1/pw is the inverse of average individual plant weight per pot. Regression coefficients without subscripts (Bs) are intercept terms and Bs subscripted with den and bio are competition coefficients that describe the influence of plant density and biomass, respectively. Density was used to describe intraspecific competition instead of biomass because of the complex relationship between pw and bio. Models were independently fit to data from the dry, intermediate, and wet treatments to yield a total of 9 models (9 models = 3 water treatments × 3 species).

Regression coefficients of 1, 2, and 3 were compared to test the null hypothesis that per-unit-plant-abundance competitive effects do not vary with the number of water applications and also to test the null hypothesis that per-unit-plant-abundance competitive effects do not vary by species. Density coefficients were compared within a species across water treatments, and biomass coefficients were compared across species when comparing within a water treatment and within a species when comparing across water treatments. Standard deviations of regression coefficients were evaluated to test the null hypothesis that the magnitude of variation in competitive relationships would change with water availability.
The following model:

\[
\text{amp}_{sp} = B + B_{ls, bio} \times \text{bio}_{ls} + B_{kb, bio} \times \text{bio}_{kb} + B_{ww, bio} \times \text{bio}_{ww}
\]

(4)

in which amp is an index of average matric pressure, was used to assess whether or not the 3 species used the same amount of water in producing a unit of biomass. This model was fit to data from each water treatment to yield a total of 3 models.

A bootstrap algorithm was used to compare regression coefficients (Efron and Tibshirani 1993, Hjorth 1994). Cases from data sets were randomly selected with replacement and inserted into a bootstrap sample until the number of cases was equal to the number of cases in the original data set, and the model of interest was then fit to the bootstrap sample to generate least-squares estimates of X and Y. For this example, the variables X and Y are regression coefficients that are being compared, and the least-squares estimate of X is greater than that of Y. These steps were repeated 1000 times to generate vectors \((x, y)\) of bootstrap regression coefficient estimates with 1000 elements. The number of cases in which \(x_i > y_j\) was evaluated for \(i = 1, 2, \ldots, 1000\) and \(j = 1, 2, \ldots, 1000\). This resulted in \(x * y = 1,000,000\) comparisons. The quantity \((1 - \text{number of cases where } x_i > y_j / 1,000,000) \times 2\) is a 2-tailed hypothesis test of \(H_0: (X = Y)\). When regression coefficients were compared to 0, a similar approach was used with each observation in the vector of bootstrap regression coefficient estimates compared to 0. \(P\)-values were calculated independently for each comparison and were not adjusted to provide “tablewise” or “experimentwise” error protection.

RESULTS

Regression coefficients in tables will be referenced without the letter B, the comma (,) will be replaced by a hyphen (-), and the coefficients will not be subscripted. For example, \(B_{ls, bio} = ls-bio\) and \(B_{ls, den} = ls-den\). Because the dependent variable is inverse plant weight, the magnitude of competition coefficients and competition intensity is positively related.

In interpreting results it is important to remember that matric pressure is negatively related to soil water content. Therefore, as water availability decreases, matric pressure increases.

Influence of Competition on Leafy Spurge Individual Plant Weight

Leafy spurge density became less negatively related to leafy spurge individual plant weight as the number of water applications increased in run 1 (Table 1), while the intensity of this intraspecific competition was unrelated to water treatment in run 2. Kentucky bluegrass and western wheatgrass biomass negatively affected leafy spurge plant weight in the dry and intermediate treatments but did not negatively affect plant weight in the wet treatment in run 1. The competitive effect of grasses on leafy spurge did not vary significantly with water treatments in run 2, and per-unit-biomass effects of Kentucky bluegrass and western wheatgrass on leafy spurge were similar to one another in both runs.

Influence of Competition on Kentucky Bluegrass Individual Plant Weight

Kentucky bluegrass density had a similar negative effect on Kentucky bluegrass individual plant weight in the dry and intermediate treatments but had little or no effect in the wet treatment in run 1 (Table 2). Kentucky bluegrass density had a negative effect on Kentucky bluegrass plant weight in run 2, but the relationship was independent of water treatment. The effect of western wheatgrass and leafy spurge biomass on Kentucky bluegrass plant weight diminished as the number of water applications increased in both runs. Western wheatgrass was more competitive with Kentucky bluegrass than was leafy spurge in both runs.

Influence of Competition on Western Wheatgrass Individual Plant Weight

Western wheatgrass density had a greater negative effect on western wheatgrass individual plant weight in the dry and intermediate treatments than in the wet treatment in both runs (Table 3). Similarly, Kentucky bluegrass and leafy spurge became less competitive with western wheatgrass as the number of water applications increased in both runs. Kentucky bluegrass was less competitive with western wheatgrass than was leafy spurge in the dry and intermediate treatments in both runs, and
TABLE 1. Competition coefficient estimates, r^2, standard deviations (s) of coefficient estimates, and comparisons of coefficients at the 5% level of confidence. The coefficients are from a multiple linear regression model fit to data from a greenhouse study with inverse of leafy spurge individual plant weight as the dependent variable and leafy spurge plant density and western wheatgrass and Kentucky bluegrass plant biomass as the independent variables.

<table>
<thead>
<tr>
<th>Run</th>
<th>Water treatment</th>
<th>r^2</th>
<th>Competition coefficients</th>
<th>Coefficient estimates</th>
<th>s</th>
<th>Comparisons of regression coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry</td>
<td>0.18</td>
<td>ls-den</td>
<td>0.38</td>
<td>0.16</td>
<td>=ls_{intermediate} ≠ls_{wet} =ww_{dry} ≠kl_{intermediate} ≠kb_{wet} =ww_{Intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>kb-bio</td>
<td>11.79</td>
<td>5.11</td>
<td>=ww_{dry} =kl_{intermediate} ≠kb_{wet} =ww_{Intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>ww-bio</td>
<td>5.82</td>
<td>4.74</td>
<td>=ww_{dry} =kl_{intermediate} ≠kb_{wet} =ww_{Intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>0.45</td>
<td>ls-den</td>
<td>0.26</td>
<td>0.17</td>
<td>≠ls_{wet} =ww_{Intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>kb-bio</td>
<td>6.24</td>
<td>2.14</td>
<td>≠ls_{wet} =ww_{Intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>ww-bio</td>
<td>8.15</td>
<td>2.15</td>
<td>=ww_{wet} ≠kw_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.34</td>
<td>ls-den</td>
<td>-0.13</td>
<td>0.02</td>
<td>=ww_{wet} ≠kw_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>kb-bio</td>
<td>-0.23</td>
<td>0.23</td>
<td>=ww_{wet} ≠kw_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>ww-bio</td>
<td>-0.12</td>
<td>0.24</td>
<td>=ww_{wet} ≠kw_{wet}</td>
</tr>
<tr>
<td>2</td>
<td>Dry</td>
<td>0.38</td>
<td>ls-den</td>
<td>0.56</td>
<td>0.21</td>
<td>=ls_{intermediate} =ls_{wet} =ww_{dry} =kl_{intermediate} =kb_{wet} =ww_{Intermediate} =ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>kb-bio</td>
<td>9.74</td>
<td>5.06</td>
<td>=ww_{dry} =kl_{intermediate} =kb_{wet} =ww_{Intermediate} =ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>ww-bio</td>
<td>22.00</td>
<td>6.64</td>
<td>≠ls_{wet} ≠ww_{Intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>0.53</td>
<td>ls-den</td>
<td>0.71</td>
<td>0.18</td>
<td>≠ls_{wet} ≠ww_{Intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>kb-bio</td>
<td>9.30</td>
<td>2.63</td>
<td>≠ls_{wet} ≠ww_{Intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>ww-bio</td>
<td>14.64</td>
<td>2.40</td>
<td>≠ww_{wet} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.54</td>
<td>ls-den</td>
<td>0.25</td>
<td>0.26</td>
<td>=ww_{wet} ≠kw_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>kb-bio</td>
<td>1.64</td>
<td>1.78</td>
<td>≠ww_{wet} ≠kw_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>ww-bio</td>
<td>1.86</td>
<td>1.90</td>
<td>≠ww_{wet} ≠kw_{wet}</td>
</tr>
</tbody>
</table>

TABLE 2. Competition coefficient estimates, r^2, standard deviations (s) of coefficient estimates, and comparisons of coefficients at the 5% level of confidence. The coefficients are from a multiple linear regression model fit to data from a greenhouse study with inverse of Kentucky bluegrass individual plant weight as the dependent variable and Kentucky bluegrass plant density and western wheatgrass and leafy spurge biomass as the independent variables.

<table>
<thead>
<tr>
<th>Run</th>
<th>Water treatment</th>
<th>r^2</th>
<th>Competition coefficients</th>
<th>Coefficient estimates</th>
<th>s</th>
<th>Comparisons of regression coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry</td>
<td>0.44</td>
<td>kb-den</td>
<td>0.62</td>
<td>0.23</td>
<td>=kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>ww-bio</td>
<td>11.58</td>
<td>3.87</td>
<td>=kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>ls-bio</td>
<td>24.50</td>
<td>6.64</td>
<td>≠ls_{wet} ≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>0.83</td>
<td>kb-den</td>
<td>0.33</td>
<td>0.04</td>
<td>≠ls_{wet} ≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>ww-bio</td>
<td>3.58</td>
<td>0.61</td>
<td>≠ls_{wet} ≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>ls-bio</td>
<td>7.93</td>
<td>1.59</td>
<td>≠ls_{wet} ≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.47</td>
<td>kb-den</td>
<td>0.15</td>
<td>0.05</td>
<td>=ww_{wet} ≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>ww-bio</td>
<td>1.93</td>
<td>0.59</td>
<td>=ww_{wet} ≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>ls-bio</td>
<td>2.91</td>
<td>1.59</td>
<td>=ww_{wet} ≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td>2</td>
<td>Dry</td>
<td>0.60</td>
<td>kb-den</td>
<td>0.18</td>
<td>0.15</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>ww-bio</td>
<td>17.07</td>
<td>2.56</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>ls-bio</td>
<td>46.99</td>
<td>9.17</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>0.71</td>
<td>kb-den</td>
<td>0.20</td>
<td>0.05</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>ww-bio</td>
<td>4.71</td>
<td>0.53</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>ls-bio</td>
<td>11.45</td>
<td>2.59</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.41</td>
<td>kb-den</td>
<td>0.10</td>
<td>0.05</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>ww-bio</td>
<td>1.86</td>
<td>0.33</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>ls-bio</td>
<td>3.36</td>
<td>1.89</td>
<td>≠kl_{intermediate} ≠kl_{wet} ≠kl_{dry} ≠kl_{wet} ≠kl_{intermediate} ≠ww_{wet}</td>
</tr>
</tbody>
</table>
this relationship was reversed in the wet treatment in run 1. Kentucky bluegrass and leafy spurge had a similar competitive effect on western wheatgrass plant weight in the wet treatment in run 2.

Influence of Water Availability on Variation in Competition Intensity

With few exceptions, estimates of the standard deviation of competition coefficients decreased or stayed the same as the number of water applications increased. This indicates that there was less variation in competitive effects when water was applied more frequently. On the other hand, there was no clear relationship between \(r^2 \) of models and the number of water applications. Whereas the competitive interactions were less variable when water was applied more frequently, factors not included in models 1, 2, and 3 (e.g., plant diseases and genetics and nutrient availability) caused greater random error when water was applied more frequently.

Influence of Plant Biomass on Average Matric Pressure

Leafy spurge and grasses had a similar effect on average matric pressure in the dry treatment in run 1 (Table 4). In the dry treatment in run 2, leafy spurge used more water in producing a unit of biomass than did the grasses, and western wheatgrass used more water in producing a unit of biomass than did Kentucky bluegrass. In the intermediate and wet treatments in run 1, leafy spurge used less water in producing a unit of biomass than did grasses, while the opposite was true for these 2 treatments in run 2.

DISCUSSION

There are 2 prevalent competing theories regarding the influence of plant productivity on competition. One theory contends that competition becomes more intense as plant productivity increases because plant biomass increases, which results in increased competition for light and space (Grime 1973, 2001, Keddy 1989). The other theory predicts that competition is similar in habitats with high and low productivity because belowground competition for nutrients is more intense in habitats with low standing crop (Newman 1973, Wilson and Tilman 1991). In this view, the intensity of above- and belowground competition is negatively related, so that net competition intensity remains similar along productivity gradients. Several field studies have relied on the response of a target plant to removal of

Table 3. Competition coefficient estimates, \(r^2 \), standard deviations (s) of coefficient estimates, and comparisons of coefficients at the 5% level of confidence. The coefficients are from a multiple linear regression model fit to data from a greenhouse study with inverse of western wheatgrass individual plant weight as the dependent variable and western wheatgrass plant density and leafy spurge and Kentucky bluegrass plant biomass as independent variables.

<table>
<thead>
<tr>
<th>Run</th>
<th>Water treatment</th>
<th>(r^2)</th>
<th>Competition coefficients</th>
<th>Coefficient estimates</th>
<th>s</th>
<th>Comparisons of regression coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry</td>
<td>0.60</td>
<td>ww-den</td>
<td>0.37</td>
<td>0.07</td>
<td>≠ww_intermediate ≠ww_wet</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>kb-bio</td>
<td>3.97</td>
<td>1.85</td>
<td>≠ls_intermediate =kb_intermediate =kb_wet</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>ls-bio</td>
<td>13.58</td>
<td>2.08</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>0.79</td>
<td>ww-den</td>
<td>0.21</td>
<td>0.02</td>
<td>≠ls_intermediate =kb_wet</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>kb-bio</td>
<td>1.28</td>
<td>0.19</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>ls-bio</td>
<td>2.49</td>
<td>0.41</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.57</td>
<td>ww-den</td>
<td>0.18</td>
<td>0.03</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>kb-bio</td>
<td>1.09</td>
<td>0.18</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>ls-bio</td>
<td>–0.16</td>
<td>0.54</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td>2</td>
<td>Dry</td>
<td>0.75</td>
<td>ww-den</td>
<td>0.55</td>
<td>0.06</td>
<td>≠ww_intermediate ≠ww_wet</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>kb-bio</td>
<td>4.52</td>
<td>1.04</td>
<td>≠ls_intermediate ≠kb_intermediate ≠kb_wet</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td></td>
<td>ls-bio</td>
<td>17.62</td>
<td>3.65</td>
<td>≠ls_intermediate ≠ls_intermediate ≠ls_wet</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>0.71</td>
<td>ww-den</td>
<td>0.32</td>
<td>0.03</td>
<td>≠ww_intermediate ≠ls_intermediate ≠ls_wet</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>kb-bio</td>
<td>1.44</td>
<td>0.42</td>
<td>≠ls_intermediate =kb_wet</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>ls-bio</td>
<td>7.98</td>
<td>1.80</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.69</td>
<td>ww-den</td>
<td>0.22</td>
<td>0.02</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>kb-bio</td>
<td>1.02</td>
<td>0.22</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td></td>
<td>ls-bio</td>
<td>2.70</td>
<td>1.11</td>
<td>≠ls_intermediate =ls_wet</td>
</tr>
</tbody>
</table>
surrounding vegetation as a measure of competition intensity along productivity gradients, and differences in competition intensity have (Del Moral 1983, Reader and Best 1989) and have not (Wilson and Tilman 1991, 1993) been detected.

In this greenhouse study competition intensity stayed similar or decreased as the number of water applications (i.e., plant productivity) increased (Tables 1–3), and therefore the null hypothesis that competition would be unaffected by the frequency of water application is rejected. Competition staying similar is consistent with one of the prevalent theories that relates competition intensity to plant productivity (Newman 1973, Wilson and Tilman 1991), but an inverse relationship between competition intensity and frequency of water application is inconsistent with both theories. This finding is also inconsistent with studies in which interspecific competition among 3 desert plants and intraspecific competition of a desert annual intensified when water was added in the field (Kadmon 1995, Briones et al. 1998). All plants were still quite small (<25 cm in height) by the end of these greenhouse experiments, signifying that competition for light may not have offset competition for water in treatments that resulted in high water availability (i.e., treatments with low seeding densities and 3 water applications).

Competition intensity decreased when water supply was increased in a field experiment that studied competition between tree seedlings and herbaceous species (Davis et al. 1998), which is similar to the findings of these greenhouse experiments. One explanation for the inverse relationship between competition intensity and water availability found in both experiments is supplied by a theory predicting that competition intensity will decrease when high supplies of new resources become available (Huston and DeAngelis 1994). If competition does become less intense as the number of precipitation events increases in the field, competition between grasses and leafy spurge is less intense in years and locations with both frequent and substantial precipitation events.

These greenhouse experiments contribute to our ultimate goal of developing models that predict invasive plant and grass biomass response to management strategies in the field. The fact that competition coefficient standard deviations tended to decrease as the number of water applications increased suggests that models will predict plant biomass more accurately in wet years (Tables 1–3). However, there was no clear relationship between the importance of competition (model r^2) and the number of water applications (Tables 1–3; Welden and Slauson 1986), which suggests that models will account for variation in plant biomass equally well in years with few and many precipitation events. It appears that the influence of competition became less variable when water was applied more frequently, but other factors that cause variation in plant weight (disease, genetics, nutrients) had a more pronounced effect when water was applied more frequently. The null hypothesis that variation in competition intensity is related to the number of water applications is not rejected.

The competitive influence of Kentucky bluegrass biomass on leafy spurge plant weight was similar to that of western wheatgrass biomass regardless of water treatment (Table 1). The null hypothesis that per-unit abundance competitive effects of the grasses are similar is not rejected. Biesboer et al. (1994) reported that 5 grasses did not affect leafy spurge shoot

Table 4

<table>
<thead>
<tr>
<th>Run</th>
<th>Water treatment</th>
<th>r^2</th>
<th>kb-bio</th>
<th>ww-bio</th>
<th>ls-bio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry</td>
<td>0.37</td>
<td>-0.05a</td>
<td>0.01a</td>
<td>-0.02a</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>0.40</td>
<td>0.09a</td>
<td>0.04a</td>
<td>-0.03b</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.37</td>
<td>0.09a</td>
<td>0.09a</td>
<td>-0.01b</td>
</tr>
<tr>
<td>2</td>
<td>Dry</td>
<td>0.41</td>
<td>0.05a</td>
<td>0.16b</td>
<td>0.44c</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>0.24</td>
<td>0.05a</td>
<td>0.06a</td>
<td>0.18b</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>0.44</td>
<td>0.08a</td>
<td>0.14a</td>
<td>0.55b</td>
</tr>
</tbody>
</table>

aCoefficients within a row that are followed by the same letter are not significantly different at the 5% level of confidence.
weight in a greenhouse, but these grasses did
decrease root weight with the magnitude of the
effect depending on the grass species. Dif-
ferent grass species also affect leafy spurge
aboveground biomass production differently
in the field (Ferrell et al. 1992, Biesboer et al.
1994, Lym and Tober 1997). However, unlike
the analysis reported in this manuscript, the
effect of a grass species was confounded by
the amount of biomass the species produced
in these studies, and all of the grasses may
have competed similarly if competitive effects
were expressed on a per-unit-biomass basis.
Several studies support the theory that per-
unit-biomass competitive effects of many plant
species are similar (Goldberg 1987, Mitchell
et al. 1999, Aguiar et al. 2001, Peltzer and Kochy
2001). If our results hold true in the field,
Kentucky bluegrass, western wheatgrass, and
probably other grasses may be considered col-
lectively in estimating the influence of grass
production on leafy spurge production.

Results from this greenhouse study might
improve our ability to predict the influence of
environmental conditions on relationships
between invasive plants and grasses if conclu-
sions can be extrapolated to natural condi-
tions. However, conclusions should be viewed
very cautiously because there are substantial
differences between greenhouse and field con-
ditions. An even-aged, somewhat even-sized
cohort of juvenile plants was used in this study,
while most biomass is attributed to mature
plants in the field. This resulted in a contrived
partitioning of soil resources because leafy
spurge was not capable of accumulating re-
sources from substantially deeper depths than
grasses, as is the case in the field (Bakke 1936).
Grasses and leafy spurge attained similar heights
in this study, while leafy spurge is usually
taller than grasses in the field. Pots with high
densities of leafy spurge may have misrepre-
sented high-density patches of leafy spurge,
because leafy spurge may be a better competitor
for light under field conditions. Also, evidence
suggests that shading can decrease plant water
stress in dry soils, which indicates that compe-
tition for water may diminish with plant
height (Salisbury and Chandler 1993). Results
from this study provide some insight into the
influence of water availability on competition
between grasses and leafy spurge, but it will
be necessary to compare results to field ex-
periment results to substantiate the findings. If
field and greenhouse results are similar, results
from future greenhouse studies might be viewed
with more confidence.

Literature Cited

Effect of landscape position on soil water and corn
silage yield. Soil Science Society of America Journal
57:1573–1580.

Intensity of intra- and interspecific competition in
ecoexisting shortgrass species. Journal of Ecology 89:
40–47.

Bailey, H.P. 1979. Semi-arid climates: their definition and
Lawton, editors, Agriculture in semi-arid environ-
ments. Springer-Verlag, Berlin, Germany.

Bakke, A.L. 1936. Leafy spurge (Euphorbia esula L.). Iowa
Agricultural Experiment Station Research Bulletin

Controlling leafy spurge and Canada thistle by competitive
species. Minnesota Department of Transportation,

Briones, O., C. Montana, and E. Ezcurra. 1998. Com-
petition intensity as a function of resource availabil-

Davis, M.A., K.J. Wrage, and P.B. Reich. 1998. Competi-
tion between tree seedlings and herbaceous vegeta-
tion: support for a theory of resource supply and

Del Moral, R. 1983. Competition as a control mechanism
in subalpine meadows. American Journal of Botany

1991. Chemical control of spotted knapweed (Cen-
taura maculosa) in Montana. Pages 303–315 in L.F.
James, J.O. Evans, M.H. Ralphs, and R.D. Child,
editors, Noxious range weeds. Westview Press Inc.,
Boulder, CO.

Ferrell, M.A., T.D. Whiston, D.W. Koch, and A.E.
Gade. 1992. The control of leafy spurge (Euphorbia
esula L.) by the interaction of herbicides and peren-
nial grasses. Pages 1-54–1-56 in Research Progress
Report, Western Society of Weed Science.

2002. Soil compaction effects on growth of young
ponderosa pine following litter removal in Califor-
nia’s Sierra Nevada. Soil Science Society of America

_____. 2001. Plant strategies, vegetation processes, and
ecosystem properties. 2nd edition. John Wiley & Sons
Ltd., West Sussex, England.

Hjortt, J.S.U. 1994. Computer intensive statistical meth-

and coexistence: the effects of resource transport

Received 16 September 2003
Accepted 7 October 2004