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ABSTRACT Since the sequencing of the genome and
the development of high-throughput tools for the explo-
ration of functional elements of the genome, the chicken
has reached model organism status. Functional genomics
focuses on understanding the function and regulation of
genes and gene products on a global or genome-wide
scale. Systems biology attempts to integrate functional
information derived from multiple high-content data sets
into a holistic view of all biological processes within a
cell or organism. Generation of a large collection (∼600K)
of chicken expressed sequence tags, representing most
tissues and developmental stages, has enabled the con-
struction of high-density microarrays for transcriptional
profiling. Comprehensive analysis of this large expressed
sequence tag collection and a set of ∼20K full-length
cDNA sequences indicate that the transcriptome of the
chicken represents approximately 20,000 genes. Further-
more, comparative analyses of these sequences have facil-
itated functional annotation of the genome and the cre-
ation of several bioinformatic resources for the chicken.
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INTRODUCTION

The completion of sequencing, assembly, and annota-
tion of the chicken genome (International Chicken Ge-
nome Sequencing Consortium, 2004) represents a monu-
mental achievement for biologists in basic and applied
research (Burt, 2007; Dodgson, 2007). The chicken embryo
has been used as a model system for embryology and
developmental biology for more than 2 millennia (Stern,
2004, 2005). For more than 8 millennia, the chicken has
flourished as a domesticated livestock species deeply inte-
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Recently, about 20 papers have been published on tran-
scriptional profiling with DNA microarrays in chicken
tissues under various conditions. Proteomics is another
powerful high-throughput tool currently used for exam-
ining the dynamics of protein expression in chicken tis-
sues and fluids. Computational analyses of the chicken
genome are providing new insight into the evolution of
gene families in birds and other organisms. Abundant
functional genomic resources now support large-scale
analyses in the chicken and will facilitate identification
of transcriptional mechanisms, gene networks, and meta-
bolic or regulatory pathways that will ultimately deter-
mine the phenotype of the bird. New technologies such
as marker-assisted selection, transgenics, and RNA inter-
ference offer the opportunity to modify the phenotype of
the chicken to fit defined production goals. This review
focuses on functional genomics in the chicken and pro-
vides a road map for large-scale exploration of the
chicken genome.

grated into human culture (Dohner, 2001; Price, 2002).
Therefore, it is fitting that the chicken would be the first
domestic animal chosen for complete genome sequenc-
ing. The fact that the chicken genome sequence was com-
pleted a century after the birth of classic poultry genetics
is another remarkable coincidence (Dodgson, 2003). Func-
tional genomics is a relatively new discipline spawned
by the technological revolution (Venter et al., 1996; Rowen
et al., 1997), the momentum of inquisitiveness, and the
spirited competitiveness (Collins et al., 2003b) that drove
early completion of the human genome sequence (Inter-
national Human Genome Sequencing Consortium, 2001;
Venter and et al., 2001). The sequence of the human ge-
nome, with its complement of 20,000 to 25,000 protein-
encoding genes, was not truly finished until 2004 (Human
Genome Sequencing Consortium, 2004).
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The chicken genome sequence was completed within
a year—a historic accomplishment for avian biologists
(International Chicken Genome Sequencing Consortium,
2004; Siegel et al., 2006; Burt, 2007; Dodgson, 2007) em-
powered by the high-throughput technologies developed
in quest of the human genome sequence (Collins et al.,
2003a). A critical step toward sequencing of the chicken
genome was high-throughput DNA sequencing of ex-
pressed sequence tags (EST) from dozens of tissue-spe-
cific cDNA libraries generated from several international
projects (Abdrakhmanov et al., 2000; Tirunagaru et al.,
2000; Boardman et al., 2002; Cogburn et al., 2003c; Carré
et al., 2006). This feat has advanced the chicken to 14th
place (with 599,330 EST) among all model organisms rep-
resented in the dbEST division of GenBank. Furthermore,
the large international collection of chicken EST, and the
subsequent full-length sequencing of 19,626 cDNA (Hub-
bard et al., 2005) has enabled functional annotation of the
assembled chicken genome sequence. The sequencing of
the chicken genome and the development of high-
throughput screening platforms (microarrays) and bioinf-
ormatic tools clearly advanced the chicken to model or-
ganism status (Burt, 2005, 2007). As many have recog-
nized, completion of the genome sequence simply marks
the “end of the beginning” (Brenner, 2000; Stein, 2004;
Dodgson, 2007) of genome exploration in that species.
Functional genomics attempts to bridge the gap between
the blueprint (genome sequence or genotype) and the
living organism (trait or phenotype; see Figure 1).

Functional genomics focuses on understanding the
function and regulation of genes and gene products on a
genome-wide or global scale. High-throughput screening
platforms enable examination of the transcriptome, pro-
teome, or metabolome of an organism. Computational
integration of these functional components into a holistic
view of the biological processes of an organism has

Figure 1. Road map of functional genomics in the chicken and use of these resources for large-scale exploration of the avian genome. Functional
genomics focuses on understanding the function and regulation of genes, proteins, and metabolites on a genome-wide scale. All information
derived from the analyses of genome sequence, large-scale analysis of gene and protein expression, and metabolite profiles is integrated into
knowledge databases. High-throughput DNA sequencing of cDNA libraries from various tissues has provided a comprehensive catalog of chicken
genes and high-density microarrays for transcriptional analyses. High-throughput sequencing of genomic DNA has provided the chicken genomic
sequence, with its structure and genetic variation. Bioinformatics and computational analyses allowed assembly and annotation of the genome,
whereas various genome browsers (Ensembl, Entrez, UCSC, and ChickVD) enable detailed views of the annotated genome and links to other
databases (i.e., Gene Ontology, UniProt, KEGG, and TIGR). Biological samples taken from the embryo or chick facilitate high-throughput analysis
of the transcriptome, proteome, metabolome, or their combination. Computational analysis of transcriptional data sets provides information on
gene expression patterns and transcriptional control over clusters of coexpressed genes in gene networks. Transcriptional profiling coupled with
QTL analysis allows identification of expression QTL (eQTL), which encompasses both positional and functional candidate genes. Analysis of the
transcriptome and proteome requires access to well-annotated gene (Gene Ontology) and protein (UniProtKB) databases. Systems biology represents
the integration of high-content data sets from the transcriptome, proteome, and metabolome into functional maps of biological pathways that
determine the phenotype of the chicken. The premise of functional genomics is that if the genotype is known, then we have the knowledge base
and tools to change the phenotype of the chicken. Once functional candidate genes, proteins, or both are identified, MAS or other emerging
technologies (transgenics and RNA silencing) can be used to modify the phenotype of the bird to fit defined production goals. Recent improvements
in avian transgenics enable expression of human biologicals in eggs and provide a vehicle for targeting genes to improve production traits. For
example, green fluorescent protein is highly expressed in the beaks, legs, and feet of second-generation transgenic chicks. [This figure of transgenic
chicks expressing green fluorescent protein is reprinted by permission from Macmillan Publishers Ltd. (EMBO Reports; McGrew et al., 2004)].
EST = expressed sequence tags; TIGR = The Institute for Genomic Research; NCBI/EBI = National Center for Biotechnology Information/European
Bioinformatics Institute; SAGE = serial analysis of gene expression; MPSS = massively parallel signature sequencing; SOMs = self-organizing
maps; MALDI-TOF/MS = matrix-assisted laser desorption/ionization time-of-flight/mass spectrometry; LC/MS = liquid chromatography/mass
spectrometry; GC/MS = gas chromatography/mass spectrometry; KEGG = Kyoto Encyclopedia of Genes and Genomes.

spawned the latest life science discipline—systems biol-
ogy. Systems biology attempts to provide us with the
knowledge of how this genetic blueprint (genome se-
quence) yields a living organism. This review of func-
tional genomics describes the recent ascent of the chicken
to model organism status. Functional genomics and inte-
grated systems biology hold promise for increasing our
understanding of the complex biological processes re-
quired to complete the avian life cycle and propagate
the species.

DEVELOPMENT OF GENOMIC
RESOURCES

Assembly of a Comprehensive Catalog
of Expressed Genes

The most efficient method for gene discovery, before
completion of a genome sequence, is high-throughput
sequencing of cDNA (or EST) from normalized cDNA
libraries (Soares et al., 1994; Bonaldo et al., 1996). Prior
to 1998, only a few hundred chicken EST were present
in the dbEST division of GenBank. Figure 2 shows the
progression of EST discovery in the chicken during the
last decade. The most prolific growth of chicken EST se-
quences in GenBank occurred during a 4-yr period (1999
to 2002) due to completion of several international EST
sequencing efforts (for reviews, see Cogburn et al., 2003c,
2004; Carré et al., 2006). The largest number of chicken
EST submitted to GenBank in a single year was 359,674
sequences in 2002 (Figure 2A). The first large-scale
chicken EST sequences were derived from primary
lymphoid tissues, where 7,409 EST from B-lymphocytes
(Abdrakhmanov et al., 2000) and 2,770 unique EST (out
of 5,251 clones sequenced) from concanavalin A-activated
T cells (Tirunagaru et al., 2000) were entered into Gen-
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Figure 2. The progression of gene discovery in the chicken during
the last decade. This graph shows the number of chicken expressed
sequence tags (EST) entered per year (A) and the total accumulation of
chicken EST (B) in the dbEST division of GenBank (National Center for
Biotechnology Information).

Bank. A large number of EST (35,407) sequenced from
single and multitissue cDNA libraries (representing the
immune, metabolic-somatic, neuroendocrine, and repro-
ductive systems) were entered into GenBank between
2001 and 2004 (Cogburn et al., 2003c, 2004; Carré et al.,
2006). The largest collection of 330,096 chicken EST was
sequenced from 22 normalized cDNA libraries con-
structed from major organs and cell types of egg- and
meat-type chickens and embryos across a wide range of
developmental stages (Boardman et al., 2002). An addi-
tional 4,998 chicken EST were derived from unnormalized
cDNA libraries constructed from whole embryos (stage
26), somites, and limb buds (Jorge et al., 2004). Another
project yielded 21,285 EST from brain and testis cDNA
libraries made from Red Junglefowl and White Leghorn
chickens (Savolainen et al., 2005). An additional 13,132
EST came from native Korean chicken testis cDNA librar-
ies (Shin et al., 2005). A set of 14,409 EST was obtained
from a cDNA library constructed from intestinal tissue
of Eimeria-infected chickens (Min et al., 2005). Another

group sequenced 8,729 EST from lipopolysaccharide and
Escherichia coli-stimulated peripheral blood lymphocytes
for construction of an avian macrophage microarray (Bliss
et al., 2005). Recently, 10,848 EST were sequenced from a
cDNA library constructed from chicken primordial germ
cells isolated from White Leghorn embryos at d 6.5 (Han
et al., 2006). Collectively, nearly 600,000 chicken EST se-
quences have been deposited in public databases for com-
putational identification of expressed chicken genes.

To obtain an estimate of the number of chicken genes,
several assemblies of the chicken EST and mRNA se-
quences have been made as the EST have accrued in
public databases during the last 5 yr (Boardman et al.,
2002; Cogburn et al., 2003b,c, 2004; Hubbard et al., 2005;
Carré et al., 2006). A periodically updated chicken EST
assembly is the Gallus gallus Chicken Gene Index (Release
11.0, June 17, 2006) at The Institute for Genome Research
(TIGR; http://www.tigr.org/tdb/tgi/) or The Gene In-
dex Project (http://compbio.dfci.harvard.edu/tgi/
tgipage.html). A computational analysis of an earlier
TIGR G. gallus Chicken Gene Index (Release 6.0; August
26, 2003) revealed 11,066 provisional chicken orthologs of
human genes (Wu et al., 2004). Gene expression patterns,
generated from the tissue origin of sequenced EST, sug-
gest that approximately 15% of these putative chicken
genes are tissue specific (i.e., expressed in a single tissue
or organ), whereas 85% are commonly expressed (i.e.,
found in 2 or more tissues). A recent analysis of the
chicken transcriptome based on completion of 19,626 full-
length cDNA sequences and the assembly of 485,337 EST
sequences provides evidence for nearly 19,000 genes in
the chicken (Hubbard et al., 2005). This analysis of the
transcriptome also included a unique set of 2,272 full-
length cDNA recently sequenced from chicken bursal
lymphocytes (Caldwell et al., 2004). The chicken EST col-
lection and finished cDNA sequences were essential for
functional annotation of the chicken genome and con-
struction of a comprehensive catalog of unique chicken
genes (UniGenes). These chicken cDNA clone collections
enabled the development of several custom microarrays
for discovery of functional genes in the chicken. Further-
more, several large repositories provide physical access
to chicken cDNA clones for further analysis or expression
of most chicken genes (see Table 1).

Development of Chicken Microarrays. More than a
dozen chicken microarrays have been developed within
the last 7 yr (see Table 1). Only a few papers on gene
expression profiling with chicken DNA microarrays were
published between 2000 and 2003. A primer on the princi-
ples of microarray analysis and analytical requirements
for the chicken was published earlier (Cogburn et al.,
2003b). The initial chicken lymphoid cDNA microarrays
provided the first glimpse of global gene expression in
the immune system of the chicken during normal devel-
opment (Neiman et al., 2001; Cui et al., 2004) or provoked
immune responses in isolated cells (Liu et al., 2001a; Mor-
gan et al., 2001; Karaca et al., 2004). Tissue-specific DNA
microarrays were developed for transcriptional profiling
in the liver (Cogburn et al., 2003c), pineal gland (Bailey
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et al., 2003), retina (Hackam et al., 2003), intestine (Min
et al., 2003; van Hemert et al., 2003), and bursa of Fabricius
(Neiman et al., 2003). The Del-Mar 14K Chicken Inte-
grated Systems microarray [Gene Expression Omnibus
(GEO) Accession No. GPL1731; Cogburn et al., 2004] was
constructed from 2 earlier arrays representing the meta-
bolic-somatic (GEO Accession No. GPL1737) and neuro-
endocrine-reproductive systems (GEO Accession No.
GPL1744; Ellestad et al., 2006). A high-density (13K)
multitissue chicken cDNA array (Burnside et al., 2005)
was recently developed from a set of 11,447 nonredun-
dant EST from the Biotechnology and Biological Sciences
Research Council collection (Boardman et al., 2002) and
a collection of lymphoid cDNA representing 4,162 EST.
A focused and well-annotated 5K immune array was pro-
duced by the Roslin Institute for examining host defense
(Smith et al., 2006). The chicken intestinal intraepithelial
lymphocyte microarray and the avian macrophage mi-
croarray provide robust transcriptional platforms for
characterizing host responses against invasion of mucosal
pathogens (Lillehoj et al., 2007). The Chicken Genome
GeneChip, containing probes for 33,457 chicken and viral
pathogen transcripts, is commercially available from Af-
fymetrics (http://www.affymetrix.com). A long-oligo
(70-mer) array [Gallus gallus (chicken) Roslin/ARK CoRe
Array V1.0] representing 20,673 transcripts is available
from Operon (https://www.operon.com/) in ready-to-
spot 384-well plates. Printed 20.7K chicken long-oligo
arrays are also available from the University of Arizona
(http://www.grl.steelecenter.arizona.edu/) and ARK
Genomics (http://www.ark-genomics.org/). It is likely
that commercial long-oligo arrays and the chicken ge-
nome array (GeneChip) will eventually replace custom
microarrays as standardized high-quality platforms for
transcriptional analysis. Some additional chicken mi-
croarrays are introduced in the gene expression section
below.

Several reviews have described the availability of
chicken genomics resources, including EST collections
and microarrays (Burt, 2004; Cogburn et al., 2004; Antin
and Konieczka, 2005; Fadiel et al., 2005). Initial overviews
of functional genomics in the chicken have been pub-
lished (Brown et al., 2003; Cogburn et al., 2003b,c; Burt,
2005; Moore et al., 2005). A list of functional genomics
resources for the chicken and links to useful Web sites
are provided in Table 1.

Functional Annotation
of the Genome Sequence

The next critical step after genome sequencing is the
rigorous functional annotation of the genome sequence.
Assignment of the major functional units (genes) to the
chicken genome sequence was enabled by the compre-
hensive catalog of chicken EST from chicken tissues (Ab-
drakhmanov et al., 2000; Tirunagaru et al., 2000; Board-
man et al., 2002; Carré et al., 2006) and by the finished
or complete cDNA sequencing of most chicken genes
(Hubbard et al., 2005). The most common functional anno-

tation of a genome uses the unified Gene Ontology (GO;
http://www.geneontology.org/) assignment of gene and
protein function to 3 broad categories: cellular component,
molecular function, and biological process (Ashburner et al.,
2000). Currently, the GO Annotation (GOA) database at
the European Bioinformatics Institute (http://www.ebi.
ac.uk/GOA/) contains 33,796 distinct human proteins,
whereas only 16,146 distinct proteins have been identified
in the chicken. Both transcriptomic and proteomic data
are excellent sources for structural and functional annota-
tion of chicken genes. At present, the majority of “known”
genes in the chicken genome are annotated electronically
by sequence homology or by ab initio gene prediction
algorithms (Eyras et al., 2005). Experimental evidence of
expression from transcriptomic and proteomic studies
allows rapid verification of predicted gene transcripts and
proteins to support functional annotation of the chicken
genome sequence.

HIGH-THROUGHPUT GENOME-WIDE
SCREENING

Gene Expression Profiling with Microarrays

Through the use of cDNA microarrays, investigators
can measure mRNA levels for thousands of genes simul-
taneously, rather than one gene at a time. This high-
throughput approach has been widely adopted in biologi-
cal research. Various chicken tissues have been used for
large-scale transcriptional analysis during normal devel-
opment or after specific perturbations. This section re-
views these studies to illustrate the power of DNA mi-
croarrays for transcriptional profiling and the discovery
of functional genes in the chicken.

Neuroendocrine and Reproductive Systems. The pi-
tuitary gland and hypothalamus of the brain constitute
the central components of the neuroendocrine system.
This system plays a dominant role in controlling growth,
metabolism, and reproduction. Nutrient availability and
peripheral neuroendocrine signals from peripheral recep-
tors and glands are integrated in the central nervous sys-
tem; reciprocally, the hypothalamus communicates sig-
nals by regulating the release of hypothalamic-releasing
hormones and release-inhibiting hormones, which reach
the anterior pituitary gland via hypophyseal portal circu-
lation. These hypothalamic-releasing and release-inhib-
iting hormones control secretion of trophic hormones
from the anterior pituitary gland. In addition, magnocel-
lular neurons originating in the hypothalamus and termi-
nating in the posterior pituitary gland release stored neu-
rohormones directly into systemic circulation. The hor-
mones secreted from the anterior and posterior pituitary
glands include those regulating growth and metabolism
[growth hormone (GH) and thyroid-stimulating hormone
(TSH), reproduction [luteinizing hormone (LH), follicle-
stimulating hormone (FSH), and prolactin (PRL)], stress
responses (adrenocorticotropic hormone), and renal func-
tion (Arg vasotocin). The hypothalamus also plays a criti-
cal role in controlling feed intake via the function of sev-
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eral neuropeptides. Stimulation of feed intake involves
neuropeptide Y and agouti-related protein, whereas inhi-
bition of intake involves α-melanocyte-stimulating hor-
mone, cocaine- and amphetamine-regulated transcript,
and corticotrophin-releasing hormone.

Traditionally, regulation of gene expression within the
neuroendocrine system has been studied one gene or sev-
eral select genes at a time. This focused approach has been
very effective in defining multiple integrated pathways
involved in neuroendocrine regulation of feed intake, me-
tabolism, and somatic growth (Richards and Proszko-
wiec-Weglarz, 2007). For example, anterior pituitary lev-
els of mRNA for PRL, GH, TSH, and LH in poultry have
been analyzed by Northern blotting, ribonuclease protec-
tion assays, PCR, and in situ hybridization (Talbot et al.,
1991; Kansaku et al., 1994; Tong et al., 1997; Ramesh et
al., 1998; Bossis and Porter, 2000; Fu and Porter, 2004;
Muchow et al., 2005). Similar studies have evaluated ex-
pression of mRNA for hypothalamic neuropeptides, in-
cluding neuropeptide Y, vasoactive intestinal polypep-
tide, corticotrophin-releasing hormone, and gonadotro-
pin-releasing hormone in poultry (Talbot et al., 1995;
Boswell et al., 1999; Sun et al., 2001; Chaiseha et al., 2004;
Saito et al., 2005; Vandenborne et al., 2005). The develop-
ment of chicken cDNA microarrays has enabled analysis
of gene expression profiles for thousands of genes simul-
taneously in individual samples of the pituitary gland
or hypothalamus.

Microarray analysis of RNA from small tissue samples
(i.e., individual pituitary glands) is problematic because
less than 25 �g of total RNA (needed for a standard
microarray analysis) can be recovered from small tissue
samples. To overcome this obstacle, RNA amplification
protocols have been developed for use with microarrays.
Ribonucleic acid amplification procedures, originally
published by Eberwine and colleagues (Phillips and Eber-
wine, 1996), have recently been adapted for use with
chicken pituitary samples (Porter and Ellestad, 2005; El-
lestad et al., 2006). These procedures transcribe RNA in
vitro by using T7 RNA polymerase and cDNA samples
produced with an oligo(dT) primer containing the T7
promoter. This procedure typically yields 5 to 10 �g of
amplified RNA (equivalent to mRNA) from 500 ng of
starting total RNA, an approximately 300-fold amplifica-
tion. Performing a second round of amplification allows
for analysis of RNA from single cells collected by laser
capture microscopy. Readers interested in microarray
analysis of small samples, (i.e., pituitary glands or cul-
tured cells) are directed to previous reports for detailed
descriptions of this procedure (Phillips and Eberwine,
1996; Porter and Ellestad, 2005; Ellestad et al., 2006).

In the first study to examine global gene expression
patterns in the chicken neuroendocrine system, Cassone
and colleagues (Bailey et al., 2003) developed a cDNA
microarray specific to another component of the neuroen-
docrine system, the pineal gland. This gland secretes mel-
atonin (MT) and functions in synchronizing daily
rhythms of activity and reproductive timing in birds. In
that study, RNA samples were analyzed from pineal
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glands of animals exposed to light-dark cycles or to total
darkness. A number of genes were identified whose
mRNA levels fluctuated in a rhythmic pattern, corres-
ponding to the prevailing light-dark cycle. These included
genes involved in MT synthesis and orthologs of mamma-
lian clock genes, as expected. Genes involved in other
processes (i.e., transduction of light, immune and endo-
crine signaling) were also found to fluctuate rhythmically.
In a second study, this group extended their transcrip-
tional analyses to the retina of chicks exposed to light-
dark cycles or constant darkness (Bailey et al., 2004).
Again, expression of chicken orthologs of mammalian
clock genes and genes involved in MT synthesis fluctu-
ated with the prevailing photoperiod. More important,
application of cDNA microarray technology to this sys-
tem allowed identification of a number of novel candidate
genes with rhythmic expression in both the pineal gland
and the retina. Furthermore, several genes involved in
intermediary metabolism and protein degradation exhib-
ited rhythmicity, pointing out the extent and complexity
of such coordination. None of these genes had previously
been implicated in the regulation of daily rhythms.

A second and more extensive cDNA microarray for
the chicken neuroendocrine system was developed with
clones sequenced from a cDNA library constructed with
RNA pooled from the hypothalamus, pituitary gland, and
pineal gland. The EST sequencing from this library and
development of the Chicken Neuroendocrine System 5K
microarray (GEO Accession No. GPL1744) was described
earlier (Cogburn et al., 2003c, 2004; Porter and Ellestad,
2005; Ellestad et al., 2006). Porter and colleagues used
the Chicken Neuroendocrine System 5K microarrays to
examine the ontogeny of hypothalamic gene expression
during the perihatch period. Ribonucleic acid was iso-
lated from hypothalami before [embryonic day (e)17 and
e19] and after hatching [posthatch day (d)1 and d3] and
analyzed with the microarrays. Expression levels of 105
genes changed substantially during this period of devel-
opment. Transcription profiles for myelin basic protein
(MBP), stathmin (STMN1), dopamine, and cAMP-regu-
lated neuronal phosphoprotein (DARPP), 2′,3′-cyclic-nu-
cleotide 3′-phosphodiesterase (CNP2), receptor-type pro-
tein Tyr-protein phosphatase N2 precursor (PTPN2), bone
morphogenic protein 7 (BMP7), and glyceraldehyde
phospho-dehydrogenase (GAPDH) were confirmed by
quantitative real-time PCR (qRT-PCR). The STMN1 gene
was overexpressed in undifferentiated neurons, and hy-
pothalamic STMN1 levels decreased from e17 to d3. In
contrast, MBP levels increased from e17 to d3, which
agrees with the observation that myelination of the central
nervous system occurs primarily after hatch. In addition
to these predicted changes, the abundance of DARPP
and CNP2 increased dramatically between d1 and d3,
indicating a substantial increase in neuronal signaling
within the hypothalamus after hatching. In addition, lev-
els of PTPN2 and BMP7 transcripts decreased dramati-
cally but transiently on e19 and d1, respectively, indicat-
ing changes in signaling events within the hypothalamus
specific to the perihatch period.

The 5K Chicken Neuroendocrine System microarray
was recently used to profile developmental changes in
gene expression in the pituitary gland from e10 to e17
(Ellestad et al., 2006). This period of embryonic develop-
ment is characterized by the differentiation of 3 distinct
anterior pituitary cell types that produce specific trophic
hormones (TSH, GH, and PRL). In that study, 393 genes
were differentially expressed during this period of embry-
onic development (e10 to e17). Self-organizing map
(SOM) analysis (Tamayo et al., 1999) enabled clustering
of these differentially expressed genes based on their tran-
scriptional profiles during development. The TSHβ
mRNA levels increased steadily during embryonic devel-
opment, whereas PRL expression was nearly absent
through e14, and then increased dramatically on e17. In
contrast, expression of β-actin decreased in the pituitary
during embryonic development, whereas the abundance
of GH was low on e10 and e12, but increased dramatically
by e17. A previous report indicated that glucocorticoid
treatment increased GH mRNA indirectly through induc-
tion of another unidentified gene in the chicken (Bossis
and Porter, 2003). Interestingly, 2 genes that respond to
glucocorticoid treatment in mammals, the glucocorticoid-
induced Leu zipper (GILZ) and dexamethasone-induced
Ras 1 (DEXRAS1), exhibit expression profiles that are
similar to GH. The expression profiles of 33 differentially
expressed genes identified by microarray analysis were
confirmed by using an independent method, qRT-PCR.
These findings demonstrate that microarray analysis can
be performed on amplified RNA from individual pitu-
itary glands from chicken embryos as early as e10. More-
over, a number of unique genes were identified that could
play a role in regulating the differentiation of anterior
pituitary cells.

Microarray technology has also been used to study
global gene responses in cultured pituitary cells. In the
first study of this type, Porter and colleagues aimed to
identify genes directly and rapidly regulated by the adre-
nal glucocorticoid corticosterone (CS) within the embry-
onic pituitary gland. Pituitary cells from e11 embryos
were treated with CS (for 1.5, 3, 6, 12, or 24 h) in the
absence or presence of cycloheximide, a protein synthesis
inhibitor. Amplified pituitary RNA was then analyzed
with the Del-Mar 14K Integrated Systems microarrays.
Expression of 27 genes was affected by CS at 1.5 or 3 h
both in the absence and in the presence of cycloheximide;
13 of these genes were induced at least 2-fold by CS within
3 h. None of these direct targets of CS had previously
been demonstrated in the anterior pituitary gland.

Transcriptional profiling with cDNA microarrays has
also been used to identify differentially expressed genes
in the neuroendocrine system in a set of divergently se-
lected chickens. Hallböök and colleagues (Ka et al., 2005)
compared hypothalamic gene expression at hatching be-
tween 2 chicken lines genetically selected for high or low
BW at 8 wk of age (Dunnington and Siegel, 1996). This
microarray analysis indicated that 41 genes, including
endogenous avian leukosis virus (ALV), were differen-
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tially expressed between the 2 lines, although no details
were provided.

Another functional genomics project (Cogburn et al.,
2003c, 2005) has focused on a different population of
broiler chickens genetically selected for either high-
growth (HG) or low-growth (LG) BW (Ricard, 1975). The
idea was that global transcript profiling in multiple tis-
sues of divergent lines could identify genes that contrib-
ute to such large differences in production traits. Body
weight in these experimental broiler lines diverges after
3 wk of age, with a greater than 2-fold difference at 11
wk. Gene expression profiles in the anterior pituitary
gland were recently compared at 1, 3, 5, and 7 wk of age
by using the Del-Mar 14K Integrated Systems microarrays
(Porter et al., 2007). The microarray analysis identified 263
genes that were differentially expressed in the pituitary
gland between the HG and LG lines in at least one age.
These included 4 of the 6 trophic hormones produced by
the anterior pituitary gland. Three pituitary hormones
(TSHβ, LHβ, and FSHβ) were more abundant in the HG
line, whereas the fourth gene (GH) was expressed at
higher levels in the LG line. The expression patterns of
TSHβ, LHβ, GH, and 6 other genes were confirmed by
qRT-PCR analysis.

An additional study (Porter et al., 2007) examined gene
expression profiles in the anterior pituitary gland and
hypothalamus of genetically selected fat (FL) and lean
(LL) lines of chickens (Leclercq, 1988) during juvenile
development. Anterior pituitary glands and hypothalami
were collected before (1 and 3 wk) and after (5 to 11 wk)
the divergence in weight of the abdominal fat pad. The
Del-Mar 14K Chicken Integrated Systems microarrays
were used for transcriptional profiling of these samples.
Interestingly, differences in gene expression profiles were
found in both the anterior pituitary and the hypothalamus
between FL and LL chickens at 1 and 3 wk. This indicates
early divergence in the expression of genes in the neuro-
endocrine system between the FL and LL chickens. This
system, which regulates feed intake, growth, and metabo-
lism, could be programmed differently between these
genetic lines, resulting in large (2- to 3-fold) differences
in accumulation of body fat. For the pituitary gland, mi-
croarray analysis identified 386 differentially expressed
genes between the FL and LL birds by using stringent
criteria. For the hypothalamus, 206 genes were differen-
tially expressed between the FL and LL. Several of the
differentially expressed genes identified by microarray
analysis in the anterior pituitary gland were confirmed
by qRT-PCR; one of these genes was a member of the
aldo-keto reductase family (AKR), which catalyzes the
reduction of the aldehydes to ketones. Expression of AKR
was greater in the pituitaries of LL birds compared with
FL birds.

Thus, microarray analysis has enabled examination of
the ontogeny of gene expression in the chicken neuroen-
docrine system during late embryonic and early post-
hatch development and the effects of drug or hormonal
treatments on global gene expression in cultured pituitary
cells. Rhythmic patterns of gene expression have been

described in the pineal gland and retina of birds exposed
to dark-light cycles. Finally, numerous differentially ex-
pressed genes have been discovered in the neuroendo-
crine system of chickens divergently selected for body
composition (high vs. low body fat) or growth rate (high
vs. low BW). Gene expression profiling with cDNA mi-
croarrays has already identified numerous candidate
genes in the neuroendocrine system that could control
the growth and metabolism of the chicken, and most
likely other vertebrates.

Metabolic and Somatic Systems. To date, there have
been only a few reports of gene expression profiling in
metabolic (liver, fat, muscle) and somatic (skeletal muscle
and bone growth plate) tissue of the chicken. Most studies
have focused on the liver because this organ regulates
whole-body metabolism of major nutrients (i.e., glucose,
amino acids, and lipids). This is particularly evident in
avian species, in which the liver is the main site of de novo
lipogenesis (Goodridge and Ball, 1967). Several different
models have been used for initial transcriptional profiling
in metabolic and somatic tissues of the chicken and analy-
sis of gene networks (Cogburn et al., 2003b,c, 2004; Wang
et al., 2007). These experimental models include divergent
selection (FL vs. LL and HG vs. LG; Cogburn et al., 2003c),
metabolic perturbation [the fasting and refeeding re-
sponse (Duclos et al., 2004), the abrupt embryo-to-
hatchling transition (Glass et al., 2002)], and hormonal
perturbation (Wang et al., 2007). Some observations from
these original gene expression studies are presented
below.

The first microarray analysis of chicken liver used a
nylon membrane-based array of 1,200 (1.2K) cDNA de-
rived from activated T cells (Morgan et al., 2001) to exam-
ine developmental differences (3 to 9 wk) between broiler
lines divergently selected for either HG or LG (Cogburn
et al., 2003b). Hierarchical clustering with SOM analysis
(Tamayo et al., 1999) identified 59 differentially expressed
genes in the liver of HG birds that belonged to 4 distinct
clusters, and 6 distinct clusters containing 76 genes in the
LG. Thyroid hormone-responsive Spot 14 (THRSP) and
superoxide dismutase 3 (SOD3) were among the first dif-
ferentially expressed genes discovered in the liver of HG
and LG chickens (Cogburn et al., 2003b) with this early
chicken cDNA microarray.

A prototype 3.2K liver-specific microarray (GEO Acces-
sion No. GPL1742) was developed and first used to exam-
ine hepatic gene expression during the abrupt embryo-
to-hatchling transition period (Cogburn et al., 2004). Gene
cluster analysis, using a spanning tree clustering method
(Rejto and Tusnady, 2006), revealed 756 differentially ex-
pressed genes that formed 32 distinct expression patterns.
These clusters of coexpressed genes are involved in the
metabolic switch from embryonic to terrestrial life in the
perihatch chick. For example, one group of 49 genes [Clus-
ter (C) 6, C25, and C32] showed higher levels of expres-
sion in embryos, whereas 3 other clusters (C15, C22, and
C29) showed higher expression after hatching (Figure 3).
Expression of genes in other clusters increased sharply
just before (C28) or just after (C14) hatching, whereas the
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Figure 3. Clusters of coregulated hepatic genes during the embryo-to-hatchling transition with distinct expression patterns. A spanning tree
clustering method (Rejto and Tusnady, 2006) revealed 32 distinct expression patterns from 756 differentially expressed genes. Transcriptional
profiles were determined with individual liver-specific 3.2K microarrays (GEO Platform No. GPL1742) for 4 embryos at embryonic day (e)16, e18,
and e20 and 4 chicks at posthatch day (d)1, d3, and d9. The dotted vertical line indicates hatching, and the horizontal line in each graph denotes
the mean expression level (centroid) of that cluster. The number of genes within the cluster is shown, and some examples of cluster members are
given. For inclusion in a cluster, a gene must be differentially expressed at one or more ages.

genes in cluster C31 progressively declined in the late
embryo (e16 to e20) and newly hatched (d1) chick and
then sharply increased thereafter. Several genes, ex-
pressed at higher levels in embryos, are directly involved
in the fat catabolism, transcription, or signal transduction
pathways. In contrast, the transcriptional pattern of sev-
eral other clusters of hepatic genes increases sharply after
hatching. These gene clusters encode numerous metabolic
enzymes, transcription factors, inflammatory factors,
transporters, and signaling proteins. Many of the up-reg-
ulated genes in the newly hatched chick reflect enhanced
lipogenesis [THRSP, fatty acid synthase (FASN), stearoyl-
coenzyme A (CoA) desaturase 1 or �9-desaturase (SCD1),
cytosolic malic enzyme 1 (ME1), adipose differentiation-
related protein (ADFP), and fatty acid-binding protein 1
(FABP1)] after the initial ingestion of carbohydrate- and
protein-enriched feed. Furthermore, qRT-PCR analysis
has confirmed similar patterns of gene expression first
revealed by microarray analysis. Some of these functional
genes have been integrated into a working model of tran-
scriptional control of the citric acid and fat biosynthesis
pathways in the liver of the chicken (see Figure 4 in
Cogburn et al., 2004). Thus, microarray analysis and clus-
tering of coexpressed genes have provided the first global
view of the transcriptional control over metabolism dur-
ing the abrupt embryo-to-hatchling transition.

Recently, gene expression profiling in the liver of chick-
ens with altered thyroid status (hyper- vs. hypothyroid-

ism), chronic GH injection, or both facilitated the discov-
ery of numerous thyroid hormone- and GH-responsive
genes (Wang et al., 2007). Several genes were identified
that had not been previously ascribed as either T3-respon-
sive [e.g., avian β-defensin 9 (AvBD9), epidermal growth
factor receptor pathway substrate 8-like protein 2
(EPS8L2), Rho GTPase activating protein 1 (RhoGAP), lon-
gevity assurance homolog 2 (LASS2), and ovotransferrin
(OTF)] or GH-responsive [glycogen synthase 2 (GYS2),
hexokinase 1 (HK1), squalene epoxidase (SQLE), and uri-
dine diphosphoglucose pyrophosphorylase 2 (UPG2)]
genes. Although T3 and GH are strong hormonal antago-
nists in the chicken, this study showed a remarkable de-
gree of cooperation between the somatotropic and thyro-
tropic axes in transcriptional control of multiple path-
ways. This original descriptive study on hormonal
perturbation also provided the first functional annotation
for a large number of chicken genes that are either homo-
logs or orthologs of genes characterized in other or-
ganisms.

The influence of nutritional state (fasting vs. refeeding)
on the liver transcriptome was examined in the diver-
gently selected HG and LG chickens (Ricard, 1975) by
using the 3.2K liver-specific arrays (Duclos et al., 2004).
In total, 429 differentially expressed genes that form 21
unique gene clusters were identified in the HG genotype,
compared with 346 differentially expressed genes that
form 16 clusters in the LG genotype. A number of func-
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Figure 4. Expression of peroxisome proliferator-activated receptor (PPAR) genes in liver during the embryo-to-hatchling transition (A) and the
fasting-refeeding response (B). The abundance of PPARα, PPARβ, and PPARγ transcripts were determined by quantitative reverse transcription-
PCR (qRT-PCR) analysis by using gene-specific primers and SYBR Green chemistry. Gene expression levels, calculated by the delta-delta threshold
crossing point method, are presented in arbitrary units (AU). Each bar represents the average of 4 birds. For the embryo-to-hatchling transition
study, liver samples were collected from embryos at embryonic day (e)16, e18, and e20 and hatchlings at posthatch day (d)1, d3, and d9. For the
fasting and refeeding experiment (B), 6-wk-old high-growth (HG) or low-growth (LG) cockerels were assigned to 5 different nutritional states:
fully fed (fed), fasted for 16 h (F16), fasted for 48 h (F48), refed for 4 h (R4), or refed for 24 h (R24). Four birds from each genotype were killed
under each nutritional state for collection of liver samples. Total RNA was isolated using Qiagen Midi-RNeasy kits for microarray and qRT-
PCR analyses.

tional gene clusters were down-regulated with fasting,
whereas after refeeding, the expression of these hepatic
genes was increased. One cluster contained FASN, which
was depressed by prolonged fasting and sharply up-regu-
lated during refeeding. The transcriptional response of
FASN to abrupt changes in feed intake was confirmed by
independent qRT-PCR analysis and is consistent with an
earlier report on transcriptional control of FASN (Back et
al., 1986). In contrast, some genes followed an opposite
pattern, with an increase during starvation and a decrease
during refeeding; L-lactate dehydrogenase-β (LDHβ) il-
lustrates this pattern of feeding-induced repression. Adi-
pophilin or ADRP is a marker of fat accumulation that
belongs to a gene cluster induced by refeeding. The perox-
isome proliferator-activated receptors (PPAR) belong to
a family of ligand-activated transcription factors that con-
trol key metabolic pathways (i.e., adipogenesis, fat metab-
olism, and insulin signaling; Lee et al., 2003a). Transcrip-
tional profiling in the liver of chickens clearly shows that
the PPAR respond to abrupt changes in metabolism dur-
ing the embryo-hatchling transition and the fasting-re-
feeding response (Figure 4). In the perihatch chick, ex-
pression of PPARβ and PPARγ transcripts was highest
in the liver after hatching, whereas PPARα levels were
lowest in day-old hatchlings (Figure 4A). Hepatic PPARα
mRNA levels increased sharply in fasting chickens, which
reflects an increase in catabolism of stored fat (Figure 4B).
In contrast, hepatic expression of PPARγ increases after
hatching and refeeding, which suggests that this tran-

scription factor supports lipogenesis in the chicken. When
compared with the HG chickens, hepatic expression of
PPARγ was lower in the LG line, except at 24 h after
refeeding. The abundance of PPARβ declined in 6-wk-
old HG and LG chickens during prolonged fasting but
returned to normal following refeeding. The PPAR play
a central role in transcriptional control of energy balance
via their activation by lipid ligands, subsequent interac-
tion with coactivators or corepressors, and binding of
these heterodimers to PPAR response elements in the
promoter of numerous metabolic enzymes (Feige and
Auwerx, 2007).

A large number of hepatic genes showed differences
in mRNA levels between the 2 genotypes (HG vs. LG) in
at least one of the metabolic states. Most of the differences
between genotypes were apparent in the fed (44 genes)
or refed state at 24 h (308 genes). However, the genes
that showed a consistent difference between the 2 geno-
types were less numerous than those that responded to
nutritional state. In the HG genotype, only 3 genes [trans-
ketolase (TKT), methionyl-tRNA formyltranferase
(MTFMT), and aminopeptidase (ANPEP)] were consis-
tently expressed at higher levels, whereas 2 genes [XAP-
5 (XAP5) and ribosomal protein S27 (RPS27)] were consis-
tently expressed at lower levels. Hepatic insulin-like
growth factor-1 (IGF-I) mRNA levels were higher in HG
than in LG, as previously reported (Beccavin et al., 2001).
Three genes involved in the control of lipid metabolism
[ADRP, glutathione S-transferase A1 (GSTA1), and
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Table 2. Differentially expressed genes in liver of 4 divergent broiler lines1

Age (wk)

Line 1 3 5 72 9 11

↑ HG 31 5 12 199 36 12
↑ LG 22 10 32 176 17 13
↑ FL 11 20 21 137 107 86
↑ LL 9 14 26 263 104 107

1These genes showed a significant line or line × age interaction and a false discovery rate (FDR) of ≤0.20. The
values represent up-regulated genes. Abbreviations: HG = high growth; LG = low growth; FL = fat line; LL =
lean line.

2Indicates the large number of differentially expressed genes at 7 wk of age.

PPARγ] were higher in the HG than in the LG genotype
in at least one nutritional condition. This is consistent
with the higher percentage of abdominal fat observed in
the HG compared with the LG chickens. In particular,
the relative abdominal fat weight (percentage of BW) of
HG birds was about 6-fold greater than that in the LG at
6 wk.

In a more extensive study, hepatic gene expression pro-
files were examined in the HG and LG chickens during
juvenile development (1 to 11 wk) with the Del-Mar 14K
Integrated Systems cDNA microarray (Cogburn et al.,
2004). Surprisingly, the most highly expressed gene in
the liver of the LG line, relative to the HG line, across all
ages was an endogenous retrovirus related to the ALV
envelope protein (PR57). This time-course study revealed
532 hepatic genes that showed a significant interaction
between genotype and age (Table 2). The largest number
of differentially expressed genes was found at 7 wk of
age, when 199 hepatic genes were up-regulated in the
HG line and 176 genes were up-regulated in the LG line.
A large number of up-regulated genes found in the liver
of HG birds at 7 wk are involved in the synthesis, trans-
port, and metabolism of lipids, which supports their phe-
notype of higher abdominal fat content (Table 2). The
differential expression (higher in HG birds) of an original
candidate gene, THRSP, was confirmed by qRT-PCR anal-
ysis. Thyroid hormone-responsive Spot 14-α is an im-
portant transcription factor that controls expression of
several lipogenic genes (Towle et al., 1997). Furthermore,
Cogburn and colleagues have identified insertion-dele-
tion polymorphisms in chicken THRSPα that are associ-
ated with QTL for abdominal fatness on chicken chromo-
some 1 (GGA1; Wang et al., 2004). The “leaner” LG line
shows higher expression of several genes involved in
energy metabolism, signal transduction, and hemato-
poiesis.

A large number of differentially expressed genes were
also found in breast muscle (pectoralis major) between
the HG and LG lines (Jenkins et al., 2006), although the
differences were of low amplitude. Among 3,000 genes
that were differentially expressed between the 2 geno-
types at 1 of 6 stages between 1 and 11 wk of age, only
approximately 80 showed a consistent difference (>1.2-
fold) across at least 2 ages. The gene with the largest
difference encoded a retroviral envelope protein (PR57)
already observed in liver samples, which was largely ov-

erexpressed in LG and likely results from the activity of
an endogenous retroviral locus. Several genes encoding
enzymes involved in the glycolytic pathway and in the
oxidative phosphorylation pathway were also within this
list, together with genes of yet unknown function.

Some differentially expressed genes in breast muscle
are involved in muscle hypertrophy [integrin-β1 (ITGB1)
and glycogen synthase kinase-3β (GSK3β)]. Other genes
associated with metabolic pathways involved in muscle
growth include protein phosphatase 2A-α (PPP2R1A),
TRAF4-associated factor 2 (TRAF4AF2), and prohibitin
(PHB). Additional differentially expressed genes include
regulators of protein catabolism such as cullin 2 (CUL2)
and ubiquitin-conjugating enzyme E2D 3 isoform 1
(UBE2D3). Another differentially expressed gene,
annexin-V (ANXA5), is a marker of muscle growth and
is regulated by a selection for growth potential in cattle
(Sudre et al., 2003). Additionally, several unknown genes
are differentially expressed in breast muscle between the
HG and LG lines.

The FL and LL chickens, introduced earlier, represent
unique models available to identify genes in metabolic
pathways that contribute to excessive fatness or leanness.
In agreement with the fat phenotype, genes coding for
several lipogenic enzymes [adenosine triphosphate ci-
trate lyase (ACLY), acetyl-CoA carboxylase (ACC), FASN,
ME1, and SCD1] were also found to be more abundant
in the liver of FL chickens (Assaf et al., 2004). Surprisingly,
sterol response element-binding protein 1 (SREBP1), a
transcription factor that governs the expression of these
lipogenic enzymes, was expressed at similar levels in the
liver of FL and LL (Assaf et al., 2003).

Gene expression in the liver of FL and LL chickens was
recently examined with a low-density “focused” microar-
ray of 323 cDNA (Bourneuf et al., 2006). The spotted
chicken cDNA represent genes involved in or related
to carbohydrate and lipid metabolism, including some
signaling and transcription factors and 195 cDNA pre-
viously identified by differential mRNA display analysis
in the liver of FL and LL birds (Carré et al., 2001, 2002).
Hepatic expression of several enzymes involved in lipo-
genesis [ACC, FASN, SCD1, apolipoprotein A1 (APOA1),
SREBP1, and mitochondrial malate dehydrogenase 2
(MDH2)] were overexpressed in the genetically fat chick-
ens. In contrast, 10 genes were down-regulated in the liver
of FL chickens [peroxisomal 2,4-dienoyl CoA reductase
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(DCER2), activating transcription factor 4 (ATF4), cyclic
adenosine monophosphate-response element-binding
protein 2 (C/EBP2), pyruvate carboxylase (PC), α-amylase
(AMY1A), cytochrome B (CYTB), ras homolog gene family
member F (RHOF), Ran GTPase-activating protein 1
(RANGAP1)], as were other transcripts that belong to
the cytochrome P450 family. The differential expression
between the FL and LL lines of most genes identified by
the low-density arrays was confirmed by qRT-PCR
analysis.

Recently, the developmental profiles (1 to 11 wk) of
hepatic gene expression in the FL and LL chickens were
examined with the high-density Del-Mar 14K Integrated
Systems microarray. Across 6 ages, 1,805 hepatic genes
were differentially expressed in the FL and LL chickens
(Table 2). Similar to the HG and LG lines, most of the
differentially expressed hepatic genes were found at 7
wk of age, well after the phenotypic differences are estab-
lished. Sixteen genes involved in mitogen-activated pro-
tein kinase signaling were differentially expressed be-
tween the FL and LL at 7 wk, when 12 genes were up-
regulated in the liver of FL birds and only 4 genes were
expressed at higher levels in the LL. Gene network analy-
sis with Pathway Miner software (Pandey et al., 2004)
showed that 9 genes in the wingless signaling pathway
and 7 genes in the phosphatidyl inositol signaling path-
way were differentially expressed in the liver of FL and
LL birds. This gene association network of cellular and
regulatory pathways showed a high representation of
genes in several important signaling systems [mitogen-
activated protein kinase (16 members), inositol trisphos-
phate (7 members), wingless (9 members), transforming
growth factor-β (9 members), and Toll-like receptor (TLR;
6 members)], in addition to apoptosis and integrin-medi-
ated cell adhesion pathways (see the gene network in
Figure 1).

An analysis of adipose tissue from an egg-laying breed
and a “fat” grandsire broiler breed at 10 wk of age with
a 9K chicken cDNA microarray has identified 67 differen-
tially expressed transcripts, although only 42 EST corre-
spond to known genes (Wang et al., 2006). This undefined
chicken 9K cDNA microarray was obtained from the
Beijing Genomics Institute. Surprisingly, only 3 of the 42
differentially expressed genes are directly related to lipid
metabolism [APOA1, lipoprotein lipase (LPL), and leptin
receptor gene-related protein (LEPR-GRP)]. Nonetheless,
this is the first paper published on a microarray analysis
of abdominal fat tissue in the chicken. Perhaps transcrip-
tional profiling of adipose tissue in the FL and LL chickens
during juvenile development would afford a higher reso-
lution of the genes and metabolic pathways controlling
excessive fattening in the broiler chicken.

Thus, divergently selected chickens represent a unique
model for identification of genes that control important
production traits. As a whole, transcriptome studies
should provide a better understanding of the genes and
their regulatory networks that control growth, tissue de-
velopment, and ultimately body composition. The inten-
sive genetic selection (almost exclusively for growth) ap-

plied to broiler chickens for many years could have iso-
lated a relatively limited number of general mechanisms
or pathways. In contrast, 176 cases of obesity in humans
result from single mutations in only 11 genes. In genome-
wide scans, the number of QTL for obesity-related pheno-
types in humans continues to increase. In the 2006 Obesity
Map update, 253 QTL involved in the development of
obesity in humans were identified from 61 scans (Ranki-
nen et al., 2006). It is of particular interest that these
putative obesity loci are found on all human chromo-
somes except chromosome Y (HSAY).

Immune System. Neiman and collaborators (2001)
were the first to develop a chicken immune system array.
This immune array, containing 2,200 elements, was used
to analyze myc-oncogene-induced lymphomagenesis in
the chicken bursa of Fabricius. Genes whose expression
levels correlated with myc expression in transformed folli-
cles and metastatic tumors were identified, including
genes involved in nucleolar function, ribosome biogene-
sis, and protein synthesis. Subsequently, this immune
array was expanded to 3,451 cDNA and used to compare
the transcriptional signature of chick bursal lymphomas
resulting from ALV insertional mutation of c-myb vs.
transformation by v-Rel (Neiman et al., 2003). These
arrays were also used to identify genes regulated by the
v-jun oncogene in chick embryo fibroblasts (Black et al.,
2004), and a pattern of expression was observed that is
strikingly similar to the one produced by the Marek’s
disease virus (MDV) meq oncogene (Levy et al., 2005).
Another immune system array was used to study the
host response to infection with MDV (Morgan et al., 2001)
and herpes virus of turkeys infection (Karaca et al., 2004),
and to catalog gene expression in the developing chick
thymus (Cui et al., 2004). As expected, many of the genes
identified in the viral studies responded to interferon. A
number of differences worthy of additional study were
also detected; these could contribute to the pathology
of MDV or the vaccination response to herpes virus of
turkeys. Collectively, these studies have established com-
mon mechanisms for the transformation of chicken cells
and point to differences that are characteristic of individ-
ual pathogens.

In a follow-up study on c-myc-induced tumorigenesis,
Neiman and colleagues used the 13K chicken cDNA mi-
croarray (Burnside et al., 2005), which is enriched for
chicken immune system EST, for comparative genomic
hybridization (Neiman et al., 2006). Gene amplification
and chromosomal instability were detected in myc-trans-
formed bursal follicles and lymphomas and were mapped
by using the arrays. These data established the relation-
ship between a copy number change and RNA expression
patterns. The study showed that cDNA microarrays are
useful for determining both gene expression and gene
copy number.

An avian macrophage-specific array containing nearly
5,000 genes expressed in peripheral blood lymphocytes
has been used to examine the transcriptional response of
macrophages to gram-negative bacteria in comparison
with the response to lipopolysaccharide (Bliss et al., 2005).
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Bacteria elicit a more complex response, and there is com-
mon signaling through TLR 4, although additional path-
ways are activated by whole bacteria. This avian innate
immune microarray has been used in experiments with
several avian cell or tissue types as well as a variety of
pathogens (Bliss et al., 2005; Dalloul et al., 2007). Changes
in expression of innate immune genes have been observed
in vivo (with intestinal epithelial and splenic tissues) and
in vitro [with peripheral blood monocytes, heterophils,
nonadherent blood lymphocytes, and avian macrophage
cell lines (HD11, HTC)]. In addition, innate immune re-
sponses have been elucidated after stimulation with bac-
teria (Salmonella, E. coli, and Mycoplasma), viruses (avian
influenza), intestinal parasites (Eimeria), bacterial compo-
nents (lipopolysaccharide), and immune modulators (in-
terferon-γ). Another avian immune system array has been
used to evaluate the host response to different respiratory
pathogens (Munir and Kapur, 2003; Dar et al., 2005). As
would be expected, infection of chickens with respiratory
viruses leads to a marked increase in expression of genes
related to interferon activation and inflammatory and
protein trafficking. A microarray analysis of chicken intes-
tinal lymphocyte genes induced or repressed in response
to infection with Eimeria has also been reported (Min
et al., 2003). Infection of chickens with Eimeria parasites
stimulates transcription of interferon-γ, interleukin-15,
and several cytokines in intestinal intraepithelial lympho-
cytes. The transcriptional responses of chickens to chal-
lenge with 2 important enteric pathogens (Eimeria and
Salmonella) have been reviewed in detail (Lillehoj et al.,
2007).

Microarrays have a potential use in identifying candi-
date genes for desired traits. Liu et al. (2001a) used mi-
croarrays to identify differentially expressed genes in
MDV-resistant lines of birds, and they successfully inte-
grated gene expression with genetic mapping data to
identify functional candidate genes for disease resistance
(see the expression QTL or “genetical genomics” section
below). In another application of microarray technology,
Degen et al. (2003) used microarrays to identify host-
derived natural adjuvants. Enhancement of the immune
response is a major issue in vaccine development, and the
use of natural adjuvants is more desirable than commonly
used chemical adjuvants. Global gene expression profil-
ing can be used not only to identify candidate genes, but
also to evaluate their effectiveness.

An immune system array has been used to study the
response to infection with infectious bursal disease virus
and also to identify differences in gene expression be-
tween resistant and susceptible lines (Ruby et al., 2006).
Genes involved in the inflammatory response were in-
duced in both lines; however, differences between the
2 lines were observed and a model for resistance was
established in which a more rapid and robust inflamma-
tory response serves to limit infection and pathology.
Using microarrays, van Hemert et al. (2006) found differ-
ences in gene expression in Salmonella-resistant and Sal-
monella-susceptible lines as well. In response to Salmonella
infection, the resistant, fast-growing chicken broiler line

induced genes that affected T-cell activation, whereas in
the more susceptible, slow-growing broiler line, genes
involved in macrophage activation seemed to be more
affected at d 1 postinfection. These studies point to the
value of microarrays in identifying genes associated with
disease-resistance phenotypes. Once verified, the candi-
date gene(s) could be the goal of marker-assisted se-
lection.

A 5K chicken immuno-microarray developed by ARK
Genomics (Roslin Institute) has been used to study the
immune response to vaccination with avian influenza and
provides insight into virus-host interaction (Degen et al.,
2006). As expected, genes associated with a strong im-
mune response were highly elevated in infected, naive
birds compared with immunized birds. This study also
identified genes affected by an immune adjuvant, demon-
strating another utility of microarrays in evaluating adju-
vant influence.

Cellular and Gene Networks

The advent of cDNA microarrays for global gene ex-
pression analysis (Schena et al., 1995, 1996) created the
need to interpret vast data sets and to organize genes by
their temporal expression patterns. Hierarchical cluster-
ing (Eisen et al., 1998) and SOM (Tamayo et al., 1999;
Toronen et al., 1999) were developed to visualize and
understand gene expression patterns. The assumption is
that genes with a similar function cluster together, pre-
sumably due to common transcriptional regulation, and
they usually belong to similar metabolic or regulatory
pathways. The features and limitations of these early,
unsupervised clustering methods have been reevaluated
to provide more informed choices for potential users (Yin
et al., 2006).

Perhaps the greatest challenge of functional genomics
has been to extract useful information on genetic interac-
tions from large data sets (van Someren et al., 2002). De-
tection of the genetic interactions that determine pheno-
type, which themselves are related to protein and metabo-
lite interactions, requires a mixture of computational and
experimental approaches (Carter, 2005). Several early pa-
pers (Wagner, 2001; Brazhnik et al., 2002; de la Fuente
et al., 2002) introduced the concepts and mathematical
methods for reconstructing gene networks from gene ex-
pression profiles. Some biologists believe that recon-
structing gene networks from genetic perturbation exper-
iments represents the “holy grail of functional genomics”
(Wagner, 2001). The major requirement for gene network
analysis is the systematic perturbation of each gene in a
network or pathway to determine the interaction of each
gene with other members (Brazhnik et al., 2002; de la
Fuente et al., 2002). The strengths and direction (positive
or negative) of gene interactions are determined by per-
turbing the rate of transcription, one gene at a time. Al-
though gene-by-gene perturbations are easily accom-
plished in simple organisms (e.g., yeast), genetic interac-
tions in higher organisms (e.g., birds and mammals) are
more difficult to demonstrate. The perturbation approach
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for identifying gene networks involves the integration of
computational models with experimental perturbations
and global (or genome-wide) measurements of the re-
sponses of the biological system (Tegner and Bjorkegren,
2007). The architecture and dynamics of gene networks
are best revealed when prior knowledge of the biological
system is incorporated into the inference algorithm. Simi-
larly, pathway analysis focuses on identifying a defined
set of biochemical reactions (i.e., metabolism, apoptosis,
or growth factor signaling; Klamt and Stelling, 2003;
Papin et al., 2003). Metabolic pathway analyses reveal
complex biochemical-reaction networks, which ulti-
mately define biological systems. A recent review has
described several popular bioinformatic methods and
Web-based resources used for incorporating genome-
wide transcriptional data into metabolic, cellular, and reg-
ulatory networks or pathways (Cavalieri and De Fili-
ppo, 2005).

Mapping of gene and regulatory networks requires
high-throughput analysis of transcriptional scans, cluster-
ing of coregulated genes, and computational searches for
functional motifs [i.e., cis-regulatory elements and tran-
scription factor (TF) binding sites (TFBS); Banerjee and
Zhang, 2002]. Multiple transcriptional snapshots taken
in a time series provide a dynamic dimension of gene
expression (Hoffman et al., 2003). Bayesian modeling
seems best suited for reconstruction of gene networks
from global expression data (van Someren et al., 2002).
More recent gene network models integrate meta-analy-
ses of gene expression profiles from different studies and
multiple microarray platforms in humans and mice (Ky-
oon Choi et al., 2004; Hackl et al., 2005; Stahlberg et al.,
2005; Stathopoulos and Levine, 2005; Estrada et al., 2006;
Mulligan et al., 2006). Rigorous interrogation of the cis-
regulatory regions and GO annotation of genes provides
a more comprehensive view of genetic control over meta-
bolic and developmental processes. Large-scale transcrip-
tional profiling and refined bioinformatics analyses have
revealed exquisite detail of the biological processes and
molecular networks involved in transcriptional regula-
tion of fat cell development (Hackl et al., 2005). A systems
biology approach that integrates gene expression, QTL
analysis, and modular gene network modeling in a segre-
gating population affords the greatest power in detecting
major genes controlling complex traits (Ghazalpour et al.,
2006). This novel approach, called modular QTL analysis,
combines expression QTL (eQTL) analysis and gene coex-
pression networks to identify key regulatory loci that
control expression of phenotypic traits.

A powerful new computational approach for detecting
network motifs in coexpressed gene networks uses graph
theory to extract groups of highly interconnected tran-
scripts (cliques) from genetic correlation matrices derived
from high-throughput transcriptional scans (Baldwin et
al., 2005; Chesler et al., 2005). Genes with similar expres-
sion patterns are clustered together, presumably under a
common transcriptional control mechanism. Correlations
are the most prevalent measure of coexpression and allow
construction of a “graph” with genes forming vertexes

connected with strength equal to the correlation coeffi-
cient. Cliques are completely intercorrelated groups of
genes, an ideal definition for a cluster of potentially func-
tionally related and commonly regulated genes (Voy et
al., 2006). Tightly connected regions of the correlation
graph represent subsets of genes with strong correlations
among members, and thus are likely to represent biologi-
cally significant interactions. Another component of
graph structure exploits the likelihood that coregulated
genes share some common TFBS (Allocco et al., 2004).
Genes linked by physical interactions in a network, such
as TF-gene interactions, have strongly correlated expres-
sion levels (Ideker et al., 2001).

Only a few attempts have been made to apply gene
network modeling in the chicken, although the impor-
tance of gene-gene interactions in determining phenotype
has been clearly demonstrated (Carlborg et al., 2003,
2006). Two strong metabolic perturbations—the embryo-
to-hatching transition (Glass et al., 2002) and the fasting
and refeeding response (Duclos et al., 2004)—have been
used to take time-series transcriptional snapshots of the
chicken liver. A dynamic Bayesian model for analysis of
microarray data and a spanning tree clustering method
(Rejto and Tusnady, 2006) have been developed for map-
ping “functional” clusters of genes that respond to these
metabolic perturbations. Some of the metabolic enzymes
and transcription factors identified by gene cluster analy-
sis in the liver of the perihatch chick (Cogburn et al.,
2003c, 2004) or fasting and refed chickens (Duclos et al.,
2004) have been integrated into a working model of tran-
scriptional control of the tricarboxylic acid cycle and fat
biosynthesis pathway (Cogburn et al., 2004). Thus, time-
series perturbation studies and gene cluster analysis pro-
vide powerful methods for revealing the major topogra-
phy of gene networks that control metabolic pathways
in the chicken. Identification of conserved motifs (i.e.,
TFBS) in the promoter region of coexpressed genes should
enhance the identification of genetic regulatory loci that
control important production traits in poultry.

Expression QTL or “Genetical Genomics”

Several techniques have been developed to help assess
gene function on a genome-wide scale. The most common
method is to monitor gene expression levels with cDNA
microarrays, whereby genes found to be differentially
expressed may contribute to the trait being examined.
Proteomics with mass spectrometry provides essentially
the same type of information except at the protein level.
With a growing number of genomic techniques, it is not
surprising to find that 2 or more high-throughput meth-
ods have been integrated to harness more power and
information. This section reviews attempts to merge tran-
scriptional profiling with traditional QTL analysis to re-
veal functional genes controlling expression of important
phenotypic traits.

An early example was the identification of positional
candidate genes for Marek’s disease (MD) resistance QTL
(Liu et al., 2001a). Fourteen QTL for MD resistance were
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identified by using an F2 cross between inbred experimen-
tal lines that were relatively resistant or susceptible to
MD, a virus-induced lymphoma of chickens (Vallejo et
al., 1998; Yonash et al., 1999). Because it is extremely
difficult to find the causative gene(s) for each QTL, it was
hypothesized that resistance to MD could be accounted
for by differences in gene expression. In other words, a
positional candidate gene for MD resistance QTL would
be one that is within a QTL and is differentially expressed
between the resistant and susceptible parental lines fol-
lowing challenge with the MDV. Because this work was
done prior to release of the chicken genome sequence,
each differentially expressed gene had to be mapped to
determine its genomic location. Despite monitoring only
1,200 cDNA spotted on nylon membrane arrays and map-
ping 15 candidates on the unassembled genome sequence,
Liu et al. (2001b) identified a single MD resistance gene,
GH, and several other promising candidate genes with
this approach. With the current availability of an assem-
bled genome sequence and genome-wide DNA microar-
rays, this approach could be more powerful, simpler to
implement, and used for any quantitative trait (Wayne
and McIntyre, 2002).

Thus, genetical genomics or eQTL is simply the mar-
riage of traditional linkage analysis and global transcript
profiling with cDNA microarrays (de Koning et al., 2005,
2007; Haley and de Koning, 2006). Initially conceived by
Jansen and Nap (2001), gene expression, as measured by
transcript abundance, is considered as another quantita-
tive trait or phenotype and, in combination with genetic
markers spaced throughout the genome, QTL are re-
vealed that account for variation in gene expression. The
result is that QTL can be in either cis or trans with respect
to the gene of interest. The simplest interpretation for cis-
acting QTL is that sequences flanking the gene (e.g., the
promoter region) regulate gene expression or transcript
stability. On the other hand, trans-acting QTL are thought
to involve transcription factors or other modulators. Ge-
nomic regions with a high proportion of eQTL could
represent areas with genes that have common transcrip-
tional regulators, which control important biological
pathways. The ability to identify trans-acting loci is partic-
ularly attractive because it is difficult to identify expres-
sion regulators even with a complete genome sequence.

The first study to implement this approach was per-
formed by using yeast (Brem et al., 2002), with additional
reports with more information appearing soon afterward
(Yvert et al., 2003; Brem and Kruglyak, 2005). Similar
eQTL analyses have been done in rodents (Schadt et al.,
2003; Chesler et al., 2005; Hubner et al., 2005; Lan et al.,
2006), human cells or tissues (Cheung et al., 2003; Schadt
et al., 2003; Monks et al., 2004; Morley et al., 2004; Bystrykh
et al., 2005), and plants (Schadt et al., 2003; Kirst et al.,
2004). For the most part, the results are similar to those
found in yeast. Because expression variation is heritable,
it is possible to identify eQTL, although many transcripts
do not have QTL, in which about one-third of the eQTL
act in cis, and eQTL typically account for 25 to 50% of the
variation, which suggests that transcription is complex.

Despite success in other species, some caution should
be exercised before implementing eQTL analysis in poul-
try. First, like most gene expression experiments, only
one or a few tissues and time points are monitored in an
individual. Therefore, this gives a very limited snapshot
of the complete transcriptome; consequently, conclusions
must be interpreted with this in mind. Second, significant
challenges exist with regard to how to properly analyze
the data (Gibson and Weir, 2005). Current methods are
limited in their ability to handle nonadditive, epistatic,
or other complex gene effects. This is likely to be one of
the main reasons why only a subset of genes will have
an eQTL. Third, compounding the analysis issue are ex-
perimental designs that do not have sufficient statistical
power. However, Rosa et al. (2006) recently provided
an excellent review of experimental design strategies for
using microarrays in genetical genomics studies. It is
widely recognized that gene expression measurements
are subject to “noise,” but without biological and technical
replicates, one cannot determine the source of the prob-
lem. Without sufficient statistical power, only genes with
large expression variation can be mapped. Related to this
limited statistical power is the ability to determine
whether cis-acting QTL are truly cis, where gene expres-
sion is regulated by the gene sequence itself, or the inabil-
ity to separate out trans-acting eQTL, which are closely
linked. Finally, a large eQTL project with a large number
of genotyping and microarray assays represent an expen-
sive venture that is beyond the reach of most laboratories.
Although new and improved technologies with lower
costs per data point are available, the cost of genotyping
and genome-wide transcriptional scans needs to be lower
for implementation in domestic animals. de Koning and
colleagues (2007) have outlined a more focused approach
for implementation of genetical genomics in chickens.
The integration of fine mapping of putative (or marked)
QTL and transcriptional analysis of known candidate
genes should enhance detection of cis-acting eQTL in the
targeted region.

Expression Proteomics

Proteomics is a new discipline in functional genomics
that involves global study of proteins expressed in cells,
tissues, or body fluids. An introduction to proteomics
and its application to functional genomics of the chicken
immune system was published earlier (Burgess, 2004). As
an essential tool for understanding avian systems biology,
proteomics is rapidly increasing our knowledge of pro-
teins and their dynamic interactions across all aspects
of avian biology, including host responses to infectious
diseases (Liu and Hicks, 2007). “Expression proteomics”
is similar to transcriptional analysis because it is high-
throughput profiling, which is dependent on a well-anno-
tated genome sequence and multiple supporting techno-
logies (i.e., computational analysis, bioinformatics, and
pathway modeling). The expressed proteome is defined
by all proteins existing in an organism throughout its
life cycle or, on a smaller scale, all proteins found in a
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particular cell type under a particular condition, or all
proteins in a subcellular organelle (e.g., the mitochon-
dria), or even, in some cases, all proteins in a particular
complex (e.g., the ribosome). Because of alternative splic-
ing and regulatory RNA, transcriptomics is more compli-
cated than structural genomics, and expression proteo-
mics is more complicated than transcriptomics. The ex-
pressed proteome is constantly changing through its
biochemical interactions and posttranslational modifica-
tions (acylation, acetylation, glycosylation, phosphoryla-
tion on Tyr or Ser-Thr residues or both), which greatly
increase the diversity of the proteome and modulate sub-
cellular localizations and protein-protein interactions.
The expressed proteome interacts with the genome, the
genome of other organisms, and the environment. Pro-
teins also have a complex pattern of localization, which
changes in response to stimuli. Such changes in localiza-
tion are critical to defining protein function and the ex-
pressed proteome. Organisms have radically different
proteomes in different life stages and in different environ-
mental conditions. One of the most valuable uses for
expression proteomics is in biomarker discovery, espe-
cially from blood products. Importantly, the proteome in
a production animal (e.g., the chicken) is a major compo-
nent of food consumed by humans (Hayter et al., 2005).

Expression proteomics became possible in the chicken
with the release of the chicken genome sequence (Interna-
tional Chicken Genome Sequencing Consortium, 2004).
A sequenced and well-annotated genome is fundamental
for protein identification in high-throughput screens. As
in other functional genomics disciplines, one of the big-
gest challenges in proteomics is the meaningful analysis
of large data sets. With the possible exception of bio-
marker discovery, large “laundry lists” of proteins have
limited value for solving biological problems. Fortu-
nately, the GO was created to organize, model, and under-
stand the biological function of gene products identified
by global transcriptional and proteomic profiling (Ash-
burner et al., 2000).

Beynon and colleagues are considered pioneers in the
development of proteomic methods and original investi-
gations of protein dynamics in the chicken muscle (Flan-
nery and Beynon, 1991; Cookson et al., 1992; Flannery
et al., 1992). While investigating protein turnover (i.e.,
synthesis and degradation rates), Beynon’s group devel-
oped novel methods for absolute quantification in proteo-
mics (Beynon, 2005; Beynon et al., 2005; Doherty et al.,
2005) and even less expensive approaches (Hayter et al.,
2003). Just as protein turnover is critical to cell physiology,
so is protein location; movement from one place to an-
other is critical for cell function and often defines a critical
event (i.e., cell death or immune responses). Another
group has focused on proteome-scale methods to localize
known proteins and then predict the localization of un-
known proteins (McCarthy et al., 2005, 2006b; van den
Berg et al., 2006). This new work on chicken proteomics
is providing a rapid means of functionally annotating
proteins in the GO cellular component category (McCar-
thy et al., 2006a, 2007).

Proteomics is beginning to increase our understanding
of how pathogens function in the chicken and eventually
will contribute to the design of novel interventions for
their control. For example, de Venevelles and colleagues
(2004) have begun to build a reference map of Eimeria
tenella sporozoite proteins. This group identified 16
known and 12 novel proteins in the E. tenella sporozoite.
Furthermore, E. tenella sporozoite proteins were exam-
ined as potential targets for their immunogenicity, and
approximately 50 proteins were defined as potential anti-
gens. Notably, abundance and immunogenicity are not
related in the sporozoite stage. Nanduri and colleagues
(2005, 2006) have examined the controversial area of feed
additive antibiotics in animals and how these could affect
Pasteurella multocida, the causative agent of fowl cholera
and a human zoonosis. Using an in vitro model of submin-
imum inhibitory concentrations of antibiotics (amoxicil-
lin, chlortetracycline, and enrofloxacin) and isotope-
coded affinity tags, Tatusov et al. (1997) applied proteo-
mics to identify parallel effects on the inhibition of growth
kinetics and the suppression of protein expression by
“clusters of orthologous group” categories. Potential com-
pensatory mechanisms enabling antibiotic adaptation
were identified, which could provide novel therapeutic
targets. Perhaps most significantly, this work provides
fundamental molecular evidence of how subminimum
inhibitory concentrations of antibiotics used as feed addi-
tives could inhibit a pathogen.

The chick embryo has been used as a comparative
model for the proteomic study of cerebrospinal fluid
(CSF) and brain disease (Parada et al., 2006a,b). During
the early stages of embryogenesis, the CSF plays an essen-
tial role in neuroectoderm survival, proliferation, and
neurogenesis. In a comparative study of the rat and
chicken embryonic CSF proteome, Parada et al. (2006b)
found that rat CSF had greater apolipoprotein and a more
complex enzyme pattern than chicken CSF. This differ-
ence could be related to the greater neural complexity
and synaptic plasticity in mammals. Furthermore, 14 of
these proteins exist in the adult human CSF proteome and
are altered in neurodegenerative diseases or neurological
disorders. Proteomics has been used to study the molecu-
lar mechanisms of normal and abnormal embryogenesis
and to construct a whole-embryo proteome map for the
chicken (Agudo et al., 2005). A proteome map of gonadal
primordial germ cells from chicken embryos was estab-
lished as a basis for understanding the mechanism of
embryonic germ cell development (Han et al., 2005). This
chicken gonadal primordial germ cell proteome map will
serve as a reference for germ cell biology and transgenic
research. Proteomic profiling of facial development in the
chick embryo has been used as a model for studying
craniofacial birth defects in humans (Mangum et al.,
2005). A microsample proteomics strategy was adopted
to analyze the first brachial arch, which is an embryonic
structure crucial for facial development. This work
showed that ∼8% of the craniofacial proteome changed
between e3 and e5, when 21 proteins were associated
with the rapid growth phase. An analysis of the chicken
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serum proteome has revealed plasma protein dynamics
in single-comb White Leghorn hens at 8, 19 and 23 wk
after hatching (Huang et al., 2006). Expression of 10 pro-
teins increased, whereas 3 proteins decreased as the hens
aged. Interestingly, some of these proteins are known to
be critical for egg production, leading to speculation that
the others may also be important in this process. The
chicken is also an excellent model for studying develop-
mental regulation of the crystallin gene in the lens of the
eye (Wilmarth et al., 2004). This description of the adult
chicken lens proteome included novel forms of β-A2 and
β-B2 crystalline. The novel form of β-A2 was the most
abundant and resulted from translation of a second Kozak
consensus sequence, whereas the novel form of β-B2 re-
sulted from alternate splicing of the crystalline mRNA.

The chicken bursa of Fabricius, an essential lymphoid
tissue for B-cell development (Glick, 1994), was recently
used for whole-organ proteomic analysis (McCarthy et
al., 2006b). In total, 5,198 proteins were identified in the
bursa of Fabricius and classified as B-cell specific (1,753),
stroma specific (1,972), and common (1,473) to both
classes. These proteins enabled the modeling of differenti-
ation, proliferation, transcriptional activation pathways,
and programmed cell death. This work identified 114 TF
and, of these, 42 TF had not been identified previously
in B cells from any species, which completely changed the
transcription factor geography for B cells. Hematopoietic
prostaglandin D2 synthase (PGDS) was recently identi-
fied in a proteomic study of another chicken lymphoid
tissue, the Harderian gland (Scott et al., 2005). In humans,
PGDS is preferentially expressed in human T helper
(Th)2, but not Th1, clones (Tanaka et al., 2000). This work
suggests that, at the sites of antigen presentation, at least
part of the Th2 cell population produces prostaglandin
D2, which could be involved in Th2-related immunity in
humans. In the chicken, Newcastle disease virus-infec-
tious bronchitis virus vaccination via the ocular route
increased hematopoietic PGDS synthesis in the Harderian
gland. Notably, immunity to both Newcastle disease vi-
rus and infectious bronchitis virus relies on antibody re-
sponses, which are driven by Th2 cells.

Signaling in the immune system, as in other systems,
relies heavily on reversible phosphorylation, and direct
protein analysis is the only way to identify these post-
translational modifications. The DT40 B-cell line was engi-
neered to express the “spleen Tyr kinase” (SYK) gene
(SYK) to identify SYK substrates and, in particular, their
roles in the nucleus (Zolodz et al., 2004). Spleen Tyr kinase
is a protein-Tyr kinase that is widely expressed in hemato-
poietic cells and is involved in coupling-activated immu-
noreceptors to downstream signaling events that mediate
diverse cellular responses, including proliferation, differ-
entiation, and phagocytosis. In this work, DT40 cells were
treated with pervanadate, a potent protein-Tyr phospha-
tase inhibitor that nonselectively activates SYK. The aim
was to detect and identify cytoplasmic and nuclear SYK
substrates. Tyrosine-phosphorylated proteins were im-
munopreciptated by using an antiphosphotyrosine anti-
body, and the bound proteins were eluted and then ana-

lyzed by tandem mass spectrometry. Several known sub-
strates and some candidate substrates for SYK were
identified, along with the location of 22 Tyr phosphoryla-
tion sites. Proteomics has recently been applied to neo-
plastic transformation within the immune system to help
to classify MD, an important production disease caused
by MDV, as a unique in vivo animal model for human
Hodgkin’s and many non-Hodgkin’s lymphomas that ov-
erexpress the Hodgkin’s disease antigen (CD30; Burgess
et al., 2004). Plasma proteomics confirms that, just as in
the human diseases, a soluble form of CD30 is detectable
in chickens with CD30-overexpressing lymphomas. An-
other group has used a mass spectrometry-based proteo-
mics approach to identify viral proteins expressed in host
cells (chick embryo fibroblasts) after infection with MDV
(Liu et al., 2006). Proteomic analysis of tryptic digests
from MDV-infected chick embryo fibroblast lysates re-
vealed 86 MDV proteins expressed in the infected chicken
fibroblasts, which has also helped to annotate the MDV
genome.

Muscle proteomics has obvious potential applications
for the safe and efficient production of poultry meat and
eggs. Expression of soluble proteins was examined in the
pectoralis muscle during growth in layer chickens by
using stable isotope-labeled Val (Doherty et al., 2004,
2005). Dramatic changes in relative expression levels of
many of the proteins were evident over the 27-d experi-
mental period. Ninety protein spots were identified on
2-dimensional gels, 51 spots were matched to known
chicken proteins, 12 spots matched proteins from non-
avian species, and 11 spots were unknown proteins. The
developmental dynamics of breast muscle growth
showed a very high degree of complexity: isoenzyme
shifts, association with structural elements, and post-
translational modifications. The ubiquitin-proteasome
system played a critical role in catabolism of skeletal mus-
cle protein in the chicken (Hayter et al., 2005). Apparently,
broiler chickens grow faster than layers because of their
higher rates of protein accretion and lower rates of intra-
cellular protein catabolism. This work focused on rates
of turnover in the 14 individual subunits of the 20S-core
particle. Variability in the subunit synthesis rate indicates
that some subunits are produced in excess, whereas oth-
ers could limit the concentration of 20S subunits in the
cell.

Hypothalamic proteomes from high- and low-egg-pro-
ducing chicken strains were compared to gain a better
understanding of neuroendocrine regulation in egg pro-
duction (Kuo et al., 2005). Eight proteins from 430 well-
resolved spots on 2-dimensional gels differed quantita-
tively between lines divergently selected for high or low
egg production. These differentially expressed proteins
are involved in regulating gene expression, signal trans-
duction, and lipid metabolism. One protein, heteroge-
neous nuclear ribonucleoprotein, was proposed as a novel
molecular marker for high egg production in slow-growth
local (Chinese) chickens. Sufficient water loss from the
egg is critical for successful hatching rates, and subopti-
mal water results in accumulation of a subcutaneous gel-
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like fluid in the hatchling chicks. This subcutaneous gel
contains only a few highly concentrated proteins and is
similar in composition to plasma except for the absence
of fibrinogen (McLean et al., 2004).

Because feed and its essential nutrients represent the
greatest costs in poultry meat production, Corzo and col-
leagues (2004a,b, 2005) have adopted a proteomics ap-
proach to understanding amino acid requirements. The
broiler plasma proteome was mapped in 18-d-old com-
mercial broiler chickens in an attempt to identify biomark-
ers for amino acid deficiencies (Corzo et al., 2004a,b).
Imaging mass spectrometry by matrix-assisted laser de-
sorption/ionization time-of-flight was used to identify
unique patterns of protein expression in plasma that
could indicate dietary Lys deficiency. Blood plasma from
broiler chicks fed an adequate or Lys-deficient diet was
subjected to direct matrix-assisted laser desorption/ion-
ization time-of-flight mass spectrometric analyses.
Plasma from the chicks fed the Lys-adequate diet had a
higher number of differentially expressed protein peaks
compared with the Lys-deficient chicks. Corzo et al. (2006)
have also directly analyzed muscle tissue to identify po-
tential biomarkers of nutritional deficiency. The effect of
dietary Met on breast meat accretion and protein expres-
sion in the skeletal muscle of broiler chickens was directly
analyzed ex vivo (Corzo et al., 2006). Three proteins from
pectoral muscle (pyruvate kinase, myosin alkali light
chain-1, ribosomal-protein-L-29) were identified as poten-
tial biomarkers of dietary Met deficiency. A combined
immunologic and proteomic approach was used to inves-
tigate protein oxidation in the pectoral and thigh muscle
of the chicken (Stagsted et al., 2004). α-Enolase was the
predominant carbonyl-reactive species among the water-
soluble muscle proteins, although other proteins (e.g.,
actin, heat shock protein 70, and creatine kinase) con-
tained carbonyls, 3-nitrotyrosine, or both. This was the
first evidence of nitrosylation of specific muscle proteins
in poultry meat.

Thus, the chicken also serves as an important model
organism for developing novel methods in expression
proteomics (Burgess, 2004). Expression proteomics has
been applied to study avian diseases and other physiolog-
ical processes (Liu and Hicks, 2007). Potentially useful
biomarkers for poultry production can be identified in the
tissue and fluids. Finally, expression proteomics enables
“proteogenomic” mapping to improve the structural an-
notation of both the chicken genome and its pathogens.

Transgenics in Poultry

Definitions and Utility of Transgenic Animals. A
transgenic animal is one in which there has been a deliber-
ate modification of its genome. Introduction of a foreign
gene, termed the “transgene,” is transmitted through the
germ line; therefore, every cell in the mature animal will
carry the transgene. The motives and enthusiasm for de-
veloping agriculturally relevant transgenic animals center
on the potential to accelerate conventional breeding pro-
grams for improvements in desirable production traits.

Improved growth characteristics (e.g., muscle deposition,
feed efficiency, rate of gain, and body composition) were
early goals of transgenic research, and the reality of this
approach was well supported by initial reports of the
increased growth of mice expressing a GH transgene (Pal-
miter et al., 1982). Other targeted production traits include
milk composition, wool production, and disease resis-
tance. However, attempts to apply this technology to pro-
duction animals have met with limited success: the de-
sired characteristics are frequently improved, but delete-
rious side effects have limited the commercialization of
transgenic animals. Although the technology for generat-
ing transgenic animals is well developed for mammals,
there is room for improvement, particularly in tissue-
specific or developmentally regulated expression. In ad-
dition, substantial basic information on the biology of the
system to be enhanced or altered is needed to find the
ideal target genes for transgenesis.

Technology for the development of transgenic chickens
has lagged behind that of mammals (mostly mice), in
large part because of the differences in reproductive biol-
ogy. In mammals, the single-celled oocyte is the starting
place for introduction of the transgene, and this ensures
that after cell division and embryo formation takes place,
all subsequent cells will harbor the introduced gene. Be-
cause of the intricate processes involved in egg laying, a
single-celled chicken oocyte is not available for manipula-
tion. An egg is certainly readily accessible, but the embryo
represents >50,000 cells at this stage. This vast difference
has hampered progress until very recently, with the de-
velopment of viral vectors for the efficient introduction
of transgenes and with the establishment of transfectable
chicken embryonic stem cell lines. An excellent review
of transgenic research in chickens covers developments
through 2003 (Mozdziak and Petitte, 2004) and will not
be repeated here. Since then, considerable progress has
been made by using either retroviruses or transfected
embryonic stem cells (ES). The improved efficiencies and
the ability to generate tissue-specific expression promise
to make using transgenic birds a more widely used
technique.

Viral Mediated Gene Transfer. Replication-competent
and replication-defective retroviral vectors have been
used to generate chimeric and transgenic animals for
more than 20 yr. Retroviruses are small RNA viruses that,
upon infection of dividing cells, are reverse-transcribed
into DNA and then integrated into the host genome and
passed down from generation to generation. For use in
transgenics, nonessential parts of the viral genome are
substituted with the gene for transfer, which is subse-
quently inserted into the host genome along with viral
sequences. Retroviruses occur in all classes of vertebrates,
and some of the best studied (e.g., Rous sarcoma virus,
avian leucosis virus) are well known to chicken biologists.

The use of lentiviral vectors has greatly improved ex-
pression of virally introduced transgenes. Lentiviruses
belong to a complex retrovirus subfamily that has the
ability to incorporate foreign DNA into both dividing and
nondividing cells (Naldini et al., 1996) and produce high
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titers of viral particles. Lentiviral vectors can accommo-
date up to 9,000 nucleotides of a foreign gene sequence
and produce stable long-term gene expression. Based on
high success rates in the production of transgenic mice,
lentiviral vectors have been used successfully to create
transgenic chickens (McGrew et al., 2004). In this study,
an equine infectious anemia lentivirus vector containing
the green fluorescent protein (GFP) reporter gene was
used to infect the embryo, with an efficiency on the order
of 100-fold higher than any previously published method.
The GFP transgene showed expression in both the G1
and G2 generations (see Figure 1, bottom left). A more
recent paper from Sang and colleagues (Lillico et al., 2007)
has clearly demonstrated the potential for using
transgenic hens to produce large quantities of biologically
active pharmaceutical proteins [a humanized monoclonal
antibody and interferon (hIFNβ1a)] for human therapeu-
tics in egg white. Furthermore, the ovalbumin promoter-
driven oviduct-specific expression of these therapeutic
proteins does not appear to diminish even after several
generations of germ-line transmission. This elegant work
has finally paved the way for efficient generation of
transgenic chickens and the commercial production of
human pharmaceutical proteins in the egg.

The lentivirus system has been refined for tissue-spe-
cific expression. Scott and Lois (2005) used human immu-
nodeficiency virus-derived lentiviruses to produce
transgenic quail expressing GFP under control of the hu-
man synapsin gene I promoter. The transgenic birds ex-
press the reporter gene in neurons and have respectable
rates of germ-line transmission. The approach should be
readily transferable to chickens and is an important ad-
vance because it will allow tissue-specific expression of
desired transgenes or directed knockout of deleterious
genes.

ES. Embryonic stem cells are undifferentiated, pluripo-
tent cells derived from very early, blastocyst-stage em-
bryos. These cells have no predetermined lineage and
have the potential to develop into any somatic or germ
cell. The key advantages of ES cells are that they can
proliferate in cell culture and can integrate foreign DNA
at specific, preselected sites, and that cells harboring the
introduced DNA can be selected. The ES cells are then
injected into early embryos, where they retain totipotency
and can develop into all tissues, including germ cells. In
that case, the transgene is then transmitted to subse-
quent generations.

A very significant advance in the application of ES
technology to birds focused on the development of
chicken ES cell lines (van de Lavoir et al., 2006), which
were subsequently applied to develop the chicken as a
bioreactor for the production of therapeutic monoclonal
antibodies (Zhu et al., 2005). The ES cell lines can be
cultured and transfected with plasmid DNA. Introduc-
tion of the transfected cells to the subembryonic cavity
and culture of the embryo in surrogate shells produced
birds with transgene expression in somatic tissues. In a
practical application of this approach, the genes encoding
a human monoclonal antibody and the regulatory se-

quences restricting its synthesis to egg white were
transfected into ES cells, which were cultured, selected
for the transgene, and ultimately introduced into chick
embryos. At maturity, chimeric hens lay eggs that contain
milligram amounts of antibody, which is purified from
the albumin as a human pharmaceutical. This emerging
technology opens up new frontiers in poultry science
with the potential of using chickens for “pharming” of
human proteins.

The recent success in producing transgenic birds now
moves the chicken to the forefront for genetic manipula-
tion. We can expect to see research on the introduction
of transgenes that will confer disease resistance, reduced
phosphate excretion, improved lean body mass, and other
desired traits in the near future. In addition, the chicken
has great potential for manufacturing human biopharma-
ceuticals in a very competitive marketplace.

Noncoding RNA and Gene Silencing

MiRNA. Not all expressed genes code for proteins. Ani-
mal, plant, and viral genomes encode small, noncoding
RNA that regulate gene function by affecting stability or
translational efficiency of target mRNA. One class of small
RNA, the miRNA, is becoming widely appreciated as
a pivotal regulator of gene expression. In animal cells,
miRNA appear to repress expression of target genes by
translational inhibition or mRNA degradation. The
miRNA are derived from primary transcripts that fold
into hairpin structures with an imperfect double-stranded
(ds) characteristic. The primary miRNA transcript (pri-
miRNA) is processed in the nucleus by the endonuclease
Drosha to a precursor miRNA (pre-miRNA). The pre-
miRNA precursor is then exported to the cytoplasm and
further processed by enzymes called Dicers (Lee et al.,
2003b), resulting in a ds 22-nucleotide (nt) miRNA. One
of the miRNA strands is incorporated into a silencing
complex, which binds to mRNA and represses mRNA
translation, thereby limiting protein production. This ap-
pears to happen in a cooperative manner, with many
miRNA binding to a target mRNA (Bartel, 2004). The
rapid progress in this field has been the subject of several
excellent reviews (Bartel, 2004; Novina and Sharp, 2004;
Du and Zamore, 2005).

There is strong evolutionary conservation of the se-
quence of these molecules, although recent studies do
predict the presence of species-specific miRNA (Bentwich
et al., 2005). Studies on chicken miRNA are very limited.
One hundred twenty-two homologs of miRNA were pre-
dicted from analysis of the chicken genome sequence
(International Chicken Genome Sequencing Consortium,
2004). In an analysis of the chicken transcriptome, 23
miRNA were found in chicken EST databases, and 3 pri-
miRNA operons were described that are highly conserved
with humans (Hubbard et al., 2005). In situ hybridization
studies with chick embryos have confirmed the expres-
sion and, in some instances, the tissue specificity, of sev-
eral miRNA (Hubbard et al., 2005). High-throughput
technology has been used to map expression of 135
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miRNA by whole-mount in situ hybridization, providing
a comprehensive overview of miRNA expression in chick
embryos (Darnell et al., 2006; Antin et al., 2007). Typically,
the isolation and identification of small RNA involve puri-
fication and cDNA production, which is followed by the
cloning and sequencing of single molecules or longer
“concatamers” of these molecules (Lagos-Quintana et al.,
2001; Reinhart et al., 2002; Aravin et al., 2003). This ap-
proach was used to clone several previously predicted
chicken miRNA (Xu et al., 2006). A more contemporary
approach is to use deep-sequencing technology (Margu-
lies et al., 2005). Applications of this technology for the
discovery of small RNA were developed by the Green
and Meyers laboratories (Lu et al., 2005; Henderson et
al., 2006), and this approach has been applied to discover
chicken miRNA as well as MDV-encoded miRNA (Burn-
side et al., 2006). Microribonucleic acids are a missing
link in functional genomics, and elucidation of their role
in phenotypic expression will no doubt be an exciting
chapter in 21st century chicken biology.

RNA Interference. Ribonucleic acid interference gener-
ally refers to one or more of several related mechanisms
by which the expression of RNA can inhibit gene function
in a sequence-specific manner. A key component of RNA
interference (RNai) is the existence and recognition of
some form of ds RNA (Fire et al., 1998; Waterhouse et
al., 1998), although this ds RNA can be the stem of a
hairpin loop within a single strand of RNA. The first
example of a mechanistic role for ds RNA was probably
the regulation of colicin E1 plasmid replication in E. coli
via the interaction of RNA transcribed from opposite
strands near the origin of replication (Tomizawa and Itoh,
1982). Later, expression of “antisense” RNA complemen-
tary to thymidine kinase mRNA was used to specifically
inhibit gene function, presumably through formation of
ds RNA (Izant and Weintraub, 1984). However, gene
knock-down via antisense RNA expression was not rou-
tinely successful, especially in vertebrate systems, in
which it was found to generate non-sequence-specific ef-
fects attributable to interferon induction. Conversely, oth-
ers (Matzke et al., 1989; Napoli et al., 1990) found that
plant genes could be silenced by expressing an “extra”
transgenic copy of the endogenous gene sequence. These
observations are now known to result from an evolution-
arily conserved pathway used to produce both miRNA
(described above) and analogous small interfering RNA
(siRNA). Both of these small RNA are produced by cleav-
age of RNA with a ds character (either stems of hairpins
or true ds RNA) by RNases of the Dicer family (reviewed
in Du and Zamore, 2005). The miRNA are only partially
complementary to their target mRNA, and they usually
inhibit expression by blocking translation, although they
may also reduce target mRNA levels. The siRNA can be
fully complementary to their target RNA and thus can
silence the gene(s) giving rise to the siRNA itself in a
feedback loop. These generally lead to endonucleolytic
cleavage of the target RNA by “slicer” activity of an asso-
ciated Argonaute family protein (reviewed in Tolia and
Joshua-Tor, 2007) in an RNA-induced silencing complex.

In addition, some siRNA act in the nucleus to silence
genes by blocking or reducing their transcription. Here,
the siRNA appear to act in another ribonucleoprotein
complex (RNA-induced transcriptional silencing) that is
tethered by siRNA homology to a nascent transcript and
that functions to induce the formation of heterochromatin
at the gene(s) being silenced (Buhler et al., 2006).

Ribonucleic acid interference is likely to play a major
role in the regulation of normal gene expression through
a complex interacting network of miRNA and siRNA. Of
particular relevance to the topic of functional genomics
is the experimental application of RNAi to create “knock-
down” mutations, a form of reverse genetics in which one
chooses the target gene and then explores the phenotypic
consequences of reducing or eliminating its expression.
Once a candidate gene is targeted, the question becomes
how to deliver RNAi to mediate gene silencing. In chick-
ens, one generally cannot deliver ds RNA because of its
interferon-inducing side effects. However, one can
transfect synthetic siRNA, most often choosing 21- to 29-
bp duplexes with 2-nt overhanging ends similar to the
natural products of dicer enzymes (Elbashir et al., 2001).
Although the resultant effect is transient, because of the
eventual decay of the siRNA, this approach is very useful
in cultured cells and has even been applied to live mice
(Palliser et al., 2006). Whether it would work in live chick-
ens is not yet certain. Gene knock-downs of longer effect
can be generated by using DNA plasmids designed to
transcribe short-hairpin RNA (shRNA) whose ds stems
contain the target sequence, thus relying on the cell’s
native Dicer activity to remove the loop and other extrane-
ous nucleotides and generate the functional siRNA du-
plex (Brummelkamp et al., 2002a). Alternatively, viral
vectors can deliver the shRNA transgene, with retrovi-
ruses, including lentiviruses, being among the most popu-
lar (Brummelkamp et al., 2002b). Although most plasmids
and vectors originally used RNA polymerase III promot-
ers to express transcripts that contained little more than
the shRNA itself, new vectors have been designed to
mimic the natural miRNA processing pathway more ex-
actly. These use RNA polymerase II promoters to generate
pre-miRNA-like initial transcripts with the knock-down
target sequence replacing a natural miRNA duplex region
(Silva et al., 2005). Regardless of the delivery method,
one must choose specific ~19-nt targets within the gene
to be silenced. Target sequences differing by as little as
one nucleotide can vary widely in activity, and a variety
of experimental and computational methods have been
developed for target selection (Pei and Tuschl, 2006). Even
with the use of such programs, not all targets will be
successful, and those that are will vary in the level of
gene silencing for reasons that remain unclear. However,
in some cases this can be a blessing, because it can gener-
ate a series of “alleles” exhibiting varying protein levels
attributable to variable gene silencing.

Applications of RNAi in chickens have focused mainly
on questions of embryonic development or inhibition of
viral pathogens. The first report of RNAi in chicken cells
was that of Hu and colleagues (2002), who used transfec-
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tion of cultured cells or embryo electroporation to intro-
duce synthetic siRNA targeted against Rous sarcoma vi-
rus to reduce viral growth and pathogenesis. Others (Ge
et al., 2003b) also showed that synthetic siRNA could be
used to inhibit influenza virus production in both cell
lines and chick embryos. At about the same time, several
groups used electroporation to introduce ds RNA (Pek-
arik et al., 2003), shRNA-producing DNA plasmids (Ka-
tahira and Nakamura, 2003), or a retroviral vector (Kawa-
kami et al., 2003) into chick embryos to reduce expression
of genes acting in developmental pathways. Thus, RNAi
has become a key tool for assessing gene function during
avian embryogenesis (Dai et al., 2005; Das et al., 2006;
Harpavat and Cepko, 2006). Similar to earlier studies in
mammalian cells (Silva et al., 2005), Das et al. (2006) and
Chen et al. (2007) developed chicken retroviral vectors
that expressed the siRNA target as part of a modified
miRNA cassette.

The RNAi systems must be able to alter phenotypes
by gene silencing in live birds for full realization of their
potential in functional genomics, especially with regard
to agricultural interests. To date, such studies are yet to be
published. However, recent advances in avian transgenic
technology (McGrew et al., 2004; van de Lavoir et al.,
2006; Lillico et al., 2007) should make such experiments
feasible. In particular, lentiviral vectors have been shown
to be effective in generating germline transgenic chickens
(McGrew et al., 2004) and, at least for mammals, in deliv-
ering RNAi constructs (reviewed in Morris and Rossi,
2006). Retroviral vectors make it feasible to generate li-
braries of recombinant viruses that, among them, target
every gene known in the species of interest (reviewed in
Chang et al., 2006; Echeverri and Perrimon, 2006; Root et
al., 2006). Not only do such libraries spare the prospective
user the job of constructing his or her own virus, they
allow for high-throughput screens that target multiple
genes for silencing or that can select for a phenotype of
interest and determine the gene targeted after the fact.
When a chicken RNAi library eventually becomes avail-
able, it will be a critical asset for progress in avian func-
tional genomics. Despite the fact that it is relatively easy
to eliminate selected genes by homologous recombination
in certain chicken cell lines (Buerstedde and Takeda,
1991), it has not yet been possible to make transgenic
knock-out chickens in the fashion that is now routine for
mice. Thus, the ability to make knock-down chickens with
RNAi technology is a critical need. In particular, this may
be the only way to rigorously verify “candidate” gene
alleles that are proposed to encode quantitative traits,
once those candidates are identified by positional cloning
or other strategies. Therefore, RNAi is a major key to the
future of functional genomic analysis in the chicken.

Other Functional Genomics Methods

Whole-Mount In Situ Hybridization. Gene expression
mapping with high-throughput whole-mount in situ hy-
bridization is a powerful method of identifying novel
functional genes involved in embryogenesis (Bell et al.,

2004). A chicken gene discovery project called Gallus EST
In Situ Hybridization Analysis (GEISHA) has established
a database of EST sequences, annotated embryonic genes,
and high-resolution images of gene expression patterns
in e1 to e3 embryos (http://geisha.arizona.edu/geisha/;
Antin et al., 2007). Tissue-specific and temporal patterns
of more than 100 newly discovered miRNA genes have
been mapped in the early chick embryo by whole-mount
in situ hybridization screening (Ason et al., 2006; Darnell
et al., 2006). Thus, high-throughput whole-mount in situ
hybridization screens provide unparalleled views of the
spatial and temporal organization of gene expression pat-
terns during organogenesis of the chick embryo. The GEI-
SHA project provides the avian research community with
a freely accessible database of chicken whole-mount in
situ hybridization images, gene annotation, and associ-
ated genomics metadata (Antin et al., 2007).

Metabolomics. Metabolomics is another new disci-
pline initiated in the postgenomic era from the need to
integrate metabolites into the control of gene expression
and functional activity of most proteins. Metabolomics is
the comprehensive and quantitative study of all metabo-
lites within a cell, organ, or organism and represents the
final bridge between the other “omics” technologies (ge-
nomics, transcriptomics, and proteomics) and phenotype.
High-throughput metabolomic data enable calculation of
enzyme activity and even prediction of mutations in
known or unknown genes encoding the enzymes (Wu
et al., 2005). The vast knowledge of biochemistry and
metabolic pathways compiled in the last century is inte-
grated with global metabolic profiling to provide a dy-
namic connection between genome function and pheno-
type (German et al., 2005; Go et al., 2005). Nutritional
genomics has great potential for development of metabo-
lite markers for prevention and treatment of diet-related
diseases and “personalized” medicine in the future. Re-
cent publications present some analytical methods used
in metabolic footprinting (Hollywood et al., 2006) and
the computational prediction of regulatory control over
metabolic pathways (Kummel et al., 2006) from high-
content metabolomic data. One focus of metabolomics is
lipidomics—the system-based study of all lipids, their
reactants, and functions within biological systems (Wat-
son, 2006). The human metabolite database provides
Web-based access to human metabolites, metabolic path-
way information, and metabolism data (Wishart et al.,
2007). Global lipid profiling provides a powerful tool from
the functional genomics arsenal for understanding ge-
netic and environmental influences in the development
of metabolic disorders (i.e., diabetes and obesity) and
cardiovascular diseases (Pietilainen et al., 2007). A recent
lipidomics study, contrasting the plasma lipid profiles of
the 4 divergently selected lines introduced earlier (the FL
vs. LL and the HG vs. LG), represents the first application
of metabolomics in poultry (Walzem et al., 2007). This
study revealed basic differences in lipid metabolism re-
lated to the genetic background of the founder lines,
whereas distinct shifts in lipid metabolism led to the di-
vergence in adiposity observed among these unique ex-
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perimental lines. Integration of metabolomic data with
global transcriptional and QTL analyses should greatly
improve our understanding of the genotype-phenotype
relationship in chickens. The implications of emerging
metabolomics for understanding complex biological sys-
tems in agriculture are vast and include the functional
genomics of animals, plants, and their ultimate benefac-
tor—humans (Dixon et al., 2006).

BIOINFORMATICS AND
COMPUTATIONAL BIOLOGY

Gene Ontology Annotation

The genome of an organism fundamentally defines all
its characteristics by providing the blueprint for the func-
tional molecules that control life (i.e., genes and proteins).
Publicly accessible, curated databases provide structural
and functionally annotated genome sequences, which are
critical for genomics research. Two value-added data-
bases used for functional genomics research in the chicken
are the UniProt Knowledgebase (UniProtKB; http://
www.ebi.ac.uk/swissprot/; Apweiler et al., 2004) and the
GO database (http://www.geneontology.org/; Gene On-
tology Consortium, 2001). The UniProtKB database is the
central access point for extensive curated protein informa-
tion, including function, classification, and cross-refer-
ences. The UniProtKB data are derived from many
sources, but one of its most valuable links for functional
genomics and systems biology is to the GO database
(Gene Ontology Consortium, 2001), which is the central
repository for functional gene annotations.

Functional Annotation of the Genome. The GO proj-
ect was established as the GO Consortium in 1998 to use
the vast volume of accessible biological information for
functional annotation of gene products (Gene Ontology
Consortium, 2001; Lewis, 2005). The primary mission of
the GO project is to facilitate the use of the genome infor-
mation and enable understanding of the functional units
of the genome (genes and proteins). The GO Consortium
initially included only scientists representing 3 model
organisms: the Saccharomyces Genome database; FlyBase,
the Drosophila genome database; and the Mouse Genome
database. However, every species has unique genes and
gene products that share sequence homology with differ-
ent species. Because organisms share relatively few core
gene orthologs with an identical function, the GO Consor-
tium now includes numerous prokaryotes and eukary-
otes. The GO Consortium also includes TIGR (http://
www.tigr.org/db.shtml), the European Bioinformatics
Institute GOA project (http://www.ebi.ac.uk/GOA/),
and AgBase (www.Agbase.msstate.edu), an associate GO
Consortium member that represents GO for the chicken
(ChickGO; McCarthy et al., 2006a, 2007).

Curators use both peer-reviewed literature and experi-
mental data to describe gene product function in a struc-
tured way. Gene products are classified by molecular
function, biological process, and cellular compartment,
primarily by using peer-reviewed literature and proteo-

mic data or, if these are unavailable, by homology to
orthologous products in other species. Genes and gene
products for every organism are functionally annotated
by using controlled structured vocabularies (ontologies).
Gene Ontology has developed 3 ontologies for functional
annotation: molecular function, biological process, and cellu-
lar component. Genes and gene products can have one or
more molecular functions and biological processes, and
they can be associated with one or more cellular compo-
nents. Molecular function describes activities at the molecu-
lar level and does not specify where, when, or in what
context the activity occurs. One or more molecular func-
tions can contribute to a biological process. To distinguish
between a biological process and a molecular function, a
biological process must have more than one distinct step
and not be equivalent to a pathway. A cellular component
is part of some larger object, which can be an anatomical
structure or a gene product group (Ashburner and Lewis,
2002; Ashburner et al., 2000).

The existing GO enables cross-product annotations that
maximize the utility of an individual ontology while
avoiding redundancy. In livestock, very specific processes
and functions represent economically important produc-
tion traits, which could rely on such “cross-products,”
further emphasizing the importance of representing live-
stock in the GO Consortium. Gene Ontology annotation
has been minimally used in chickens, because using GO
annotation in the chicken first required researchers to
functionally annotate their own data sets from transcrip-
tional or proteomic profiling studies. Gene Ontology an-
notations are primarily used for associating functional
genomics data sets (i.e., differentially expressed gene lists
from microarray experiments) with molecular and cellu-
lar functions. The GO Consortium has developed “GO
Slim” subsets of the GO. The GO Slim data sets act as
“ontology summaries” for modeling, and they provide
high-level views of gene function. It is critical to under-
stand that the user must create a GO Slim data set to fit
a specific experiment. At AgBase, high-throughput tools
are available to use the chicken GO annotations in analy-
ses of functional genomics data. The tools are designed for
batch process input and to accept several input formats.
Details on the use of GO tools and creating GO Slim data
sets are available in recent publications describing the
GO database structure and the availability of Web-based
resources and tools (McCarthy et al., 2006a, 2007). Two
recent studies of genes in embryonic gonads and primor-
dial germ cells of chickens (Kim et al., 2007) and the
brain of songbirds (Wada et al., 2006) provide excellent
examples of GO annotation used in functional analysis
and interpretation of avian gene expression profiles.

Comparative Genomics
for Functional Annotation

From an evolutionary viewpoint, all species are interre-
lated to a certain degree and share many similar or com-
mon molecular mechanisms to carry out biological activi-
ties. Comparative genomics is applied not only to study
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the evolution of species, but also to expand our knowl-
edge of biological processes across multiple species. Be-
cause the research resources invested in nonavian species
are far greater than those invested in avian species, trans-
ferring the discoveries from other species into our knowl-
edge of avian species can significantly advance our under-
standing. Comparative genomics approaches are proving
very effective in identifying novel genes and functional
elements in complex genomes. Bioinformatics tools allow
investigators to detect and annotate genes by using com-
parative approaches. Genome sequence, sequence simi-
larity, chromosomal location, phylogenetic trees, and con-
served sequences are integrated to effectively detect and
annotate novel genes in a new model organism, such as
the chicken.

Conserved gene sequences and their chromosomal ar-
rangement provide valuable information for comparative
genomics. The conservation among relatively closely re-
lated species includes similarity in gene sequence and in
the chromosomal location of homologous genes. During
the course of evolution, chromosomal rearrangement,
gene duplication, gene divergence, and gene loss has oc-
curred. Paralogous genes (or paralogs) are genes that
have been duplicated within the same species and that
often diverge to give different functions, whereas ortholo-
gous genes (or orthologs) are homologous genes that have
descended from the same gene of a common ancestor
and usually share a common function across species
(Brinkman and Leipe, 2001). Gene arrangement in chro-
mosomes is usually conserved in vertebrates, and can be
classified into conserved synteny (homologous genes of
2 species in the same chromosomal locations, regardless
of gene order), conserved segment (uninterrupted by
other chromosomal segments), and conserved order
(same linear orientation; Andersson et al., 1996). These
conserved characteristics allow identification of novel
genes and gene families in a species with a completed
genome sequence.

Comparative genomics also incorporates similarity-
based gene discovery and intrinsic DNA sequence analy-
sis to increase the specificity of gene detection (Windsor
and Mitchell-Olds, 2006). Intrinsic gene prediction, also
called ab initio prediction, is based only on the DNA
sequence; for example, Genscan software (Burge and Kar-
lin, 1997) uses this approach to predict gene structure.
Gene prediction is highly sensitive but with low specific-
ity and is generally incapable of identifying small open
reading frames and noncoding sequences. On the other
hand, extrinsic or comparative gene prediction programs
include transcriptional evidence (Ensembl; Hubbard et
al., 2002) and sequence similarity among species [Twin-
Scan (Korf et al., 2001) and syntenic gene prediction 2
programs (Parra et al., 2003)] to improve specificity.

Another application of comparative genomics in chick-
ens is the systematic annotation of genes, in which a
large number of genes have an unknown function. Many
chicken genes have very low sequence homology to mam-
malian genes and some are avian specific, which creates
a great challenge for automated electronic gene annota-

tion. In the absence of systematic biochemical analysis,
the prediction of functional elements in the genome of a
new model organism depends heavily on computational
and comparative analyses (Jones, 2006). Comparative ap-
proaches also identify regulatory sequences (TFBS and
miRNA) that control gene expression. However, pre-
dicting regulatory sequences in the genome is much more
difficult than gene prediction. Regulatory sequences are
cis-acting modules (i.e., promoters and enhancers) that
regulate the timing and abundance of gene expression.
Genome sequences harboring these functional elements
seem to be conserved among related species. Genome
sequences of several related species are aligned to identify
evolutionary conserved sequences that contain transcrip-
tion regulatory elements. This process is called “phyloge-
netic footprinting” (Tagle et al., 1988). Comparative analy-
ses of the human, mouse, rat, and dog genome sequences
have identified many common regulatory motifs in pro-
moters and 3′-untranslated regions (Xie et al., 2005). Pair-
wise sequence comparison between evolutionarily distant
species represents a powerful method for identification
of functional noncoding sequences that regulate gene ex-
pression (Ahituv et al., 2005). Mulan is another Web-
based multiple-sequence local alignment and visualiza-
tion tool developed for detection of evolutionarily con-
served TFBS in multiple-species alignments (Ovcharenko
et al., 2005). The short sequence and inherent variability
of real regulatory motifs makes their detection difficult
by computational searches unless accompanied by robust
statistical confirmation and experimental verification
(Friberg et al., 2005; Elnitski et al., 2006; GuhaThakurta,
2006). Recently, more than a dozen of the most widely
used computational tools were rigorously evaluated for
efficiency in predicting TFBS motifs in genomic DNA
(Tompa et al., 2005). However, the most reliable method
of detecting protein (TF) binding to DNA (promoter re-
gions) is chromatin immunoprecipitation (ChIP) coupled
with microarray or “ChIP-on-chip” analysis (Ren et al.,
2000; Elnitski et al., 2006; Jones, 2006). The use of numer-
ous bioinformatics tools and high-performance computa-
tional methods for analyzing and mining the chicken ge-
nome sequence will continue to advance our understand-
ing of avian functional genomics.

A major justification for sequencing the genome of mul-
tiple organisms is to gain a clear understanding of the
evolution of genome size and genomic structures and
to have access to the sequence (primarily coding and
regulatory regions) of all genes. For example, the chicken
genome is about one-third the size of the human genome,
yet is thought to contain about the same number of genes
(International Chicken Genome Sequencing Consortium,
2004). This initial assembly of the chicken genome se-
quence has provided compelling answers to some obvi-
ous questions regarding the avian phenotype and the loss
or gain of gene families that have occurred during the
parallel evolution of birds and mammals. For example,
what genes are truly avian specific and responsible for
specific features such as feathers, absence of mastication
(teeth) and lactation, egg formation and oviposition, or
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even flight? The speculation that the condensed genome
size of birds reflects an evolutionary response to the phys-
iological demands of flight is quite interesting (Ellegren,
2005). A recent phylogenomic analysis of amniote genome
structure based on avian and nonavian dinosaurs sug-
gests that the original reduction in avian genome size
and other avian characteristics evolved prior to flight,
although the high energetic requirements of flight in birds
led to the additional shrinkage in avian genome size (Or-
gan et al., 2007). Furthermore, comparative analysis of
avian (chicken) and mammalian genomes should provide
new insight into the ecology and evolution of bird popula-
tions found in the natural environment. Comprehensive
cross-species analysis of gene catalogs and genome se-
quences enables the discovery of novel genes and con-
served gene families and improves functional annotation
in the absence of experimental evidence (Windsor and
Mitchell-Olds, 2006). Comparative genomic analysis pro-
vides a powerful tool for understanding the evolutionary
conservation of genes and gene families and for discovery
of the functional noncoding genome sequence (Nobrega
and Pennacchio, 2004). For example, an initial analysis of
noncoding RNA in the chicken transcriptome revealed 14
pri-miRNA that encode 23 distinct miRNA in the chicken
(Hubbard et al., 2005).

Numerous gene families in the adaptive and innate
immune system of the chicken have been identified by a
comparative genomics approach. An early bioinformatics
study of the large chicken EST collection of 330,388 EST
(Boardman et al., 2002) revealed that almost half of the
known mammalian components of the TLR signaling
pathway, including 5 TLR family members, are conserved
in the chicken (Lynn et al., 2003). Five chicken TLR family
members (TLR1-1, TLR1-2, TLR3, TLR5, and TLR7) were
also identified from a search of human- and mouse-like
TLR sequences in chicken EST databases (Yilmaz et al.,
2005). With the exception of TLR1-1 and TLR5, the chicken
TLR isoforms were expressed in all of the 8 tissues exam-
ined. The complete molecular phylogenetic analysis of
all known vertebrate TLR genes, including those from the
chicken, zebra fish, puffer fish, flounder, rainbow trout,
goldfish, opossum, mouse, rat, and human, enabled con-
struction of a molecular tree illustrating the evolution of
this highly conserved gene family (Roach et al., 2005). Six
TLR gene families have evolved in vertebrates, which
recognize distinct molecular patterns representing several
classes of pathogens and provoke appropriate adaptive
or innate immune responses. Two notable observations
are that chicken TLR15 is molecularly distinct from all
other vertebrate TLR (although it could have evolved
from the ancestral TLR1 gene) and that a homolog of
TLR9 (involved in the recognition of nucleic acids and
heme) is absent in the chicken.

A comprehensive in silico analysis of 450,000 chicken
EST sequences has allowed the identification of 185 im-
mune-related genes in the chicken, including 95 immune
gene sequences not previously found in GenBank (Smith
et al., 2004). Surprisingly, most of the EST sequences that
represent such a broad range of immune-related genes

were derived from nonlymphoid tissues in healthy birds.
Comparative analysis of the chicken, mouse, and human
genomes has revealed 23 chemokine and 14 chemokine
receptor sequences in the chicken genome (Wang et al.,
2005). The phylogeny, sequence conservation, and high
synteny indicate that chicken chemokines and their recep-
tors share common ancestors with the mouse and human
genes. Another comparative genomic analysis has re-
vealed a large number of highly conserved genes in the
adaptive immune system of the chicken, including 23
interleukins, 8 interferons, 2 transforming growth factors,
24 chemokines, and 10 members of the tumor necrosis
factor superfamily (Kaiser et al., 2005). This comprehen-
sive analysis has provided a global view of the repertoire
of cytokines and chemokines of the chicken and consider-
able insight into unique features of its immune system.
Two independent genome-wide screens of the chicken
genome sequence and clustered chicken EST sequences
have identified a single highly conserved cluster of β-
defensin genes on GGA3 (Lynn et al., 2004; Xiao et al.,
2004). The β-defensin genes, formerly called gallinacins
in the chicken (Lynn et al., 2007), encode a family of
antimicrobial peptides involved in innate immune re-
sponses, primarily in the gastrointestinal and reproduc-
tive tracts (Hasenstein et al., 2006; Milona et al., 2007).
One member of this gene family, AvBD9, appears to be
involved in adipogenesis, because expression of AvBD9 is
up-regulated in the liver of FL chickens and hypothyroid
slightly obese chickens (Cogburn et al., 2003c; Wang et al.,
2007). Furthermore, 2 single-nucleotide polymorphisms
identified in chicken AvBD9 are associated with abdomi-
nal fatness traits in the F2 resource population from a FL
× LL intercross and have potential as molecular markers
for fatness in the chicken (Cogburn et al., 2003a). Bioinfor-
matic mining of the chicken EST collection and compara-
tive genome analysis has led to the discovery of other
novel gene families involved in innate immunity, such
as the biotin-binding proteins found in eggs (Niskanen
et al., 2005) and the collectins (Hogenkamp et al., 2006).
A comparative genomic study of the serpin (Ser protease
inhibitor) superfamily in the human, chicken, and zebra
fish has provided a new perspective on molecular evolu-
tion of the clade B serpins [or ovalbumin-related serpins
(ov-serpins)] and the elaboration of a younger serpin (oval-
bumin) in the chicken (Benarafa and Remold-O’Donnell,
2005)]. Chicken ovalbumin is a bird-specific clade B serpin
(lacking Ser protease activity) that serves as a storage
protein for embryonic development in the avian egg. This
novel function could have supported the early adaptation
of birds to new habitats and lifestyles. The highly con-
served clade B serpin gene cluster is located on GGA2
(10 members), whereas the human genome has 2 ov-serpin
loci: HSA6 (3 members) and HSA18 (10 members). Dupli-
cation of the ancestral SERPINB12 gene occurred inde-
pendently in chickens, which gave rise to 3 paralogs (gene
X, gene Y, and ovalbumin) and in humans, which have 5
SERPINB12 paralogs (SERPINB13, SERPINB4, SER-
PINB3, SERPINB11, and SERPINB7). An orthologous
comparison of chicken, mouse, and human genomes has
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enabled the identification of 197 putative candidate genes
located in probable QTL on GGAZ (Ankra-Badu and Ag-
grey, 2005).

Thus, comparative studies that integrate multiple ver-
tebrate genomes provide considerable insight into the
evolution of highly conserved gene families and eviden-
tial support for the functional annotation of genes and
proteins. As highlighted by the examples above, compara-
tive genomic analyses also will play an essential role in
identifying functional components (genes, proteins, and
networks) for systems biology (Roach et al., 2005) in the
chicken and other avian species.

Systems Biology

The final frontier of structural and functional genomics
is systems biology, “the 21st century science” (Hood,
2003), which integrates transcriptomic, proteomic, and
metabolomic interactions into all biological processes and
systems that support the life of an organism (Ideker et
al., 2001; Auffray et al., 2003; Ge et al., 2003a). The newest
additions to the systems biology repertoire are the inter-
actome (Cusick et al., 2005; Rachlin et al., 2006) and the
reactome (http://www.reactome.org/; Joshi-Tope et al.,
2005; Vastrik et al., 2007). The interactome represents the
computational and experimental identification of all pro-
tein-protein interactions in integrated biological systems.
The reactome is an interactive curated knowledgebase of
all biological pathways and processes in an organism.
Systems biology offers the virtual reality of complex inte-
grated biological systems and, to some, it represents “the
renaissance of physiology and end of naive reductionism”
(Strange, 2005). Both physiology and systems biology fo-
cus on the integrative and holistic analysis of functional
components (genes, proteins, and metabolites) in biologi-
cal systems that make up the phenome of living organ-
isms. The systems biology approach, which integrates
multiple disciplines and multiple high-content data sets,
holds great promise for the identification of diseases, dis-
covery of new drugs, evaluation of pharmaceutical inter-
vention, and eventual practice of “personalized medi-
cine” (Butcher et al., 2004; Cho et al., 2006; van der Greef
et al., 2007). Efforts are already underway to develop
strict standards and quality assurance for the collection,
storage, and use of complex data sets generated by the
various high-throughput omics technologies (transcripto-
mics, proteomics, and metabolomics) to maximize the
utilization of integrated knowledge gained from systems
biology (Ideker et al., 2001; Brazma et al., 2006). Although
systems biology has not yet arrived on the doorstep of
poultry science, this “big science” of the 21st century will
certainly influence most aspects of biological, agricul-
tural, and medical investigation in the near future.

CONCLUSIONS AND OUTLOOK

During the first 7 years of the 21st century, we have
amassed the cDNA sequence of most chicken genes, com-
pleted the chicken genome sequence, and begun large-

scale exploration of the functional genome of the chicken
with powerful tools supported by a bioinformatic and
computational infrastructure freely available on the
World Wide Web. Functional genomics represents the
integration of information from genome sequence and
structure, gene and protein expression, and metabolite
profiles with knowledge databases by using computa-
tional and bioinformatics tools (Figure 1). This figure pro-
vides a road map of functional genomics in the chicken,
and using these tools and knowledge of biological path-
ways has implications for altering the phenotype of the
bird to meet production demands. A major premise of
emerging systems biology is that an understanding of the
genotype and the biological processes that contribute to
expression of the phenotype should allow reconstruction
of the phenotype. This systemic approach to understand-
ing complex biological systems, as embraced by emerging
systems biology, has been the hallmark of physiology for
centuries. Functional genomics offers the genetic blue-
print and the knowledge gained from all of the complex
interactions among the genomic, proteomic, and meta-
bolic domains of a model organism, such as the chicken,
that materialize as the phenotype(s). The intersection of
these 3 omic domains constitutes the reactome of the
organism. We now have the genomic parts list of the
chicken, although we do not yet comprehend what all
of these genetic parts are or how they interact. Poultry
breeding programs developed during the last century
have been very efficient at modifying the chicken geno-
type to improve phenotypes. For the most part, previous
improvements in growth rate and other important pro-
duction traits were achieved by quantitative genetic selec-
tion without knowledge of the underlying genes. None-
theless, some specific alleles (either useful or deleterious
ones) have either been introduced into or been excluded
from flocks, depending on regional and global market
requirements (i.e., alleles for feather or skin color, sex
identification at hatching, fast or slow feathering,
dwarfism). Transcriptional profiling with microarrays
now provides experimental evidence for the function of
thousands of genes simultaneously. Genetical genomics
incorporates genome-wide gene expression as a quantita-
tive trait (i.e., eQTL) into QTL analysis in an attempt to
identify functional candidate genes that could contribute
in either a cis or trans manner to the expression of im-
portant production traits. The integration of transcripto-
mic, proteomic, and metabolic data into gene networks
and biological pathways should provide considerable in-
sight into genetic control of phenotypic traits in the
chicken. Emerging technologies (i.e., RNA silencing and
transgenics) could eventually be used to change the phe-
notype of the chicken to meet changing market demands.
Recently, transgenic chickens have been designed that
produce pharmaceuticals for humans in the egg; there-
fore, we should be able to modify bird genotypes to meet
new target phenotypes. However, the new “designed”
chicken genotypes must be rigorously tested to ensure
that the intended improvements do not compromise ex-
isting productive performance and health.
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One can predict that integration of functional genomics
and, ultimately, systems biology with classical advances
in productive performance will ensure that the chicken
remains as a primary food source for humans. Further-
more, these technological revolutions and forthcoming
ones will guarantee the continuing role of the domestic
chicken as a model organism for our understanding of
biological processes and the intervention of human dis-
eases, particularly metabolic disorders (i.e., diabetes
and obesity).

ACKNOWLEDGMENTS

Portions of the work reviewed were supported by
USDA-Cooperative State Research, Education, and Exten-
sion Service-Initiative for Future Agricultural and Food
Systems Grant 00-52100-9614 (to LAC, TEP, and JS) and
USDA-Cooperative State Research, Education, and Exten-
sion Service-National Research Initiative Grant 2005-
35206-15288 (to LAC and TEP). We greatly appreciate
the efforts of Janet Weber (Chicken Champion/RefSeq
Project, United States Department of Health and Human
Services-National Institutes of Health-National Library of
Medicine-National Center for Biotechnology Informa-
tion) in providing data on chicken EST submissions in
GenBank. The authors are grateful for the support of Tom
Sims (University of Delaware) and Sue Lamont (Univer-
sity of Iowa) in the design and production of the color
figure.

REFERENCES

Abdrakhmanov, I., D. Lodygin, P. Geroth, H. Arakawa, A.
Law, J. Plachy, B. Korn, and J.-M. Buerstedde. 2000. A large
database of chicken bursal ESTs as a resource for the analysis
of vertebrate gene function. Genome Res. 10:2062–2069.

Agudo, D., F. Gomez-Esquer, G. Diaz-Gil, F. Martinez-Arribas,
J. Delcan, J. Schneider, M. A. Palomar, and R. Linares. 2005.
Proteomic analysis of the Gallus gallus embryo at stage-29
of development. Proteomics 5:4946–4957.

Ahituv, N., S. Prabhakar, F. Poulin, E. M. Rubin, and O. Cour-
onne. 2005. Mapping cis-regulatory domains in the human
genome using multi-species conservation of synteny. Hum.
Mol. Genet. 14:3057–3063.

Allocco, D. J., I. S. Kohane, and A. J. Butte. 2004. Quantifying
the relationship between co-expression, co-regulation and
gene function. BMC Bioinformatics 5:18.

Andersson, L., A. Archibald, M. Ashburner, S. Audun, W.
Barendse, J. Bitgood, C. Bottema, T. Broad, S. Brown, D.
Burt, C. Charlier, N. Copeland, S. Davis, M. Davisson, J.
Edwards, A. Eggen, G. Elgar, J. T. Eppig, I. Franklin, and
P. Grewe. 1996. Comparative genome organization of verte-
brates. Mamm. Genome 7:717–734.

Ankra-Badu, G. A., and S. E. Aggrey. 2005. Identification of
candidate genes at quantitative trait loci on chicken chromo-
some Z using orthologous comparison of chicken, mouse,
and human genomes. In Silico Biol. 5:593–604.

Antin, P. B., S. Kaur, S. Stanislaw, S. Davey, J. H. Konieczka,
T. A. Yatskievych, and D. K. Darnell. 2007. Gallus expression
in situ hybridization analysis: A chicken embryo gene ex-
pression database. Poult. Sci. 86:1472–1477.

Antin, P. B., and J. H. Konieczka. 2005. Genomic resources for
chicken. Dev. Dyn. 232:877–882.

Apweiler, R., A. Bairoch, C. H. Wu, W. C. Barker, B. Boeck-
mann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Ma-

grane, M. J. Martin, D. A. Natale, C. O’Donovan, N. Re-
daschi, and L. S. Yeh. 2004. UniProt: The universal protein
knowledgebase. Nucleic Acids Res. 32:D115–D119.

Aravin, A. A., M. Lagos-Quintana, A. Yalcin, M. Zavolan, D.
Marks, B. Snyder, T. Gaasterland, J. Meyer, and T. Tuschl.
2003. The small RNA profile during Drosophila melanogaster
development. Dev. Cell 5:337–350.

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler,
J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T.
Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock. 2000. Gene ontology: Tool for the
unification of biology. Nat. Genet. 25:25–29.

Ashburner, M., and S. Lewis. 2002. On ontologies for biologists:
The Gene Ontology—Untangling the web. Novartis Found.
Symp. 247:66–80.

Ason, B., D. K. Darnell, B. Wittbrodt, E. Berezikov, W. P. Kloos-
terman, J. Wittbrodt, P. B. Antin, and R. H. A. Plasterk.
2006. Differences in vertebrate microRNA expression. Proc.
Natl. Acad. Sci. USA 103:14385–14389.

Assaf, S., D. Hazard, F. Pitel, M. Morrison, M. Alizadeh, F.
Gondret, C. Diot, A. Vignal, M. Douaire, and S. Lagarrigue.
2003. Cloning of cDNA encoding the nuclear form of chicken
sterol response element binding protein-2 (SREBP-2), chro-
mosomal localization, and tissue expression of chicken
SREBP-1 and -2 genes. Poult. Sci. 82:54–61.

Assaf, S., S. Lagarrigue, S. Daval, M. Sansom, B. Leclercq, J.
Michel, F. Pitel, M. Alizadeh, A. Vignal, and M. Douaire.
2004. Genetic linkage and expression analysis of SREBP and
lipogenic genes in fat and lean chicken. Comp. Biochem.
Physiol. B Biochem. Mol. Biol. 137:433–441.

Auffray, C., S. Imbeaud, M. Roux-Rouquie, and L. Hood. 2003.
From functional genomics to systems biology: Concepts and
practices. C. R. Biol. 326:879–892.

Back, D. W., M. J. Goldman, J. E. Fisch, R. S. Ochs, and A. G.
Goodridge. 1986. The fatty acid synthase gene in avian liver.
Two mRNAs are expressed and regulated in parallel by
feeding, primarily at the level of transcription. J. Biol. Chem.
261:4190–4197.

Bailey, M., P. Beremand, R. Hammer, E. Reidel, T. Thomas,
and V. Cassone. 2004. Transcriptional profiling of circadian
patterns of mRNA expression in the chick retina. J. Biol.
Chem. 279:52247–52254.

Bailey, M. J., P. D. Beremand, R. Hammer, D. Bell-Pederson,
T. L. Thomas, and V. M. Cassone. 2003. Transcriptional
profiling of the chick pineal gland, a photoreceptive circa-
dian oscillator and pacemaker. Mol. Endocrinol. 17:2084–
2095.

Baldwin, N. E., E. Chesler, S. Kirov, M. A. Langston, J. Snoddy,
R. W. Williams, and B. Zhang. 2005. Computational, integ-
rative, and comparative methods for the elucidation of ge-
netic coexpression networks. J. Biomed. Biotechnol.
2005:172–180.

Banerjee, N., and M. Q. Zhang. 2002. Functional genomics
as applied to mapping transcription regulatory networks.
Curr. Opin. Microbiol. 5:313–317.

Bartel, D. P. 2004. MicroRNAs: Genomics, biogenesis, mecha-
nism, and function. Cell 116:281–297.

Beccavin, C., B. Chevalier, L. A. Cogburn, J. Simon, and M. J.
Duclos. 2001. Insulin-like growth factor and body growth
in chickens divergently selected for high or low growth rate.
J. Endocrinol. 168:297–306.

Bell, G. W., T. A. Yatskievych, and P. B. Antin. 2004. GEISHA,
a whole-mount in situ hybridization gene expression screen
in chicken embryos. Dev. Dyn. 229:677–687.

Benarafa, C., and E. Remold-O’Donnell. 2005. The ovalbumin
serpins revisited: Perspective from the chicken genome of
clade B serpin evolution in vertebrates. Proc. Natl. Acad.
Sci. USA 102:11367–11372.

Bentwich, I., A. Avniel, Y. Karov, R. Aharonov, S. Gilad, O.
Barad, A. Barzilai, P. Einat, U. Einav, E. Meiri, E. Sharon,



COGBURN ET AL2086

Y. Spector, and Z. Bentwich. 2005. Identification of hundreds
of conserved and nonconserved human microRNAs. Nat.
Genet. 37:766–770.

Beynon, R. J. 2005. The dynamics of the proteome: Strategies
for measuring protein turnover on a proteome-wide scale.
Brief. Funct. Genom. Proteomics 3:382–390.

Beynon, R. J., M. K. Doherty, J. M. Pratt, and S. J. Gaskell. 2005.
Multiplexed absolute quantification in proteomics using ar-
tificial QCAT proteins of concatenated signature peptides.
Nat. Methods 2:587–589.

Black, E. J., T. Clair, J. Delrow, P. Neiman, and D. A. F. Gillespie.
2004. Microarray analysis identifies autotaxin, a tumour cell
motility and angiogenic factor with lysophospholipase D
activity, as a specific target of cell transformation by v-Jun.
Oncogene 23:2357–2366.

Bliss, T. W., J. E. Dohms, M. G. Emara, and C. L. J. Keeler.
2005. Gene expression profiling of avian macrophage activa-
tion. Vet. Immunol. Immunopathol. 105:289–299.

Boardman, P. E., J. Sanz-Ezquerro, I. M. Overton, D. W. Burt,
E. Bosch, W. T. Fong, C. Tickle, W. R. A. Brown, S. A. Wilson,
and S. J. Hubbard. 2002. A comprehensive collection of
chicken cDNAs. Curr. Biol. 12:1965–1969.

Bonaldo, M. F., G. Lennon, and M. B. Soares. 1996. Normaliza-
tion and subtraction: Two approaches to facilitate gene dis-
covery. Genome Res. 6:791–806.

Bossis, I., and T. E. Porter. 2000. Ontogeny of corticosterone-
inducible growth hormone-secreting cells during chick em-
bryonic development. Endocrinology 141:2683–2690.

Bossis, I., and T. E. Porter. 2003. Evaluation of glucocorticoid-
induced growth hormone gene expression in chicken em-
bryonic pituitary cells using a novel in situ mRNA quantita-
tion method. Mol. Cell. Endocrinol. 201:13–23.

Boswell, T., I. C. Dunn, and S. A. Corr. 1999. Hypothalamic
neuropeptide Y mRNA is increased after feed restriction in
growing broilers. Poult. Sci. 78:1203–1207.

Bourneuf, E., F. Herault, C. Chicault, W. Carre, S. Assaf, A.
Monnier, S. Mottier, S. Lagarrigue, M. Douaire, J. Mosser,
and C. Diot. 2006. Microarray analysis of differential gene
expression in the liver of lean and fat chickens. Gene
372:162–170.

Brazhnik, P., A. Fuente, and P. Mendes. 2002. Gene networks:
How to put the function in genomics. Trends Biotechnol.
20:467–472.

Brazma, A., M. Krestyaninova, and U. Sarkans. 2006. Standards
for systems biology. Nat. Rev. Genet. 7:593–605.

Brem, R. B., and L. Kruglyak. 2005. The landscape of genetic
complexity across 5,700 gene expression traits in yeast. Proc.
Natl. Acad. Sci. USA 102:1572–1577.

Brem, R. B., G. Yvert, R. Clinton, and L. Kruglyak. 2002. Genetic
dissection of transcriptional regulation in budding yeast.
Science 296:752–755.

Brenner, S. 2000. Genomics: The end of the beginning. Science
287:2173–2174.

Brinkman, F. S., and D. D. Leipe. 2001. Phylogenetic analysis.
Methods Biochem. Anal. 43:323–358.

Brown, W. R. A., S. J. Hubbard, and S. A. Wilson. 2003. The
chicken as a model for large-scale analysis of vertebrate
gene function. Nat. Rev. Genet. 4:87–98.

Brummelkamp, T. R., R. Bernards, and R. Agami. 2002a. A
system for stable expression of short interfering RNAs in
mammalian cells. Science 296:550–553.

Brummelkamp, T. R., R. Bernards, and R. Agami. 2002b. Stable
suppression of tumorigenicity by virus-mediated RNA in-
terference. Cancer Cell 2:243–247.

Buerstedde, J. M., and S. Takeda. 1991. Increased ratio of tar-
geted to random integration after transfection of chicken B
cell lines. Cell 67:179–188.

Buhler, M., A. Verdel, and D. Moazed. 2006. Tethering RITS
to a nascent transcript initiates RNAi- and heterochromatin-
dependent gene silencing. Cell 125:873–886.

Burge, C., and S. Karlin. 1997. Prediction of complete gene
structures in human genomic DNA. J. Mol. Biol. 268:78–94.

Burgess, S. C. 2004. Proteomics in the chicken: Tools for under-
standing immune responses to avian diseases. Poult. Sci.
83:552–573.

Burgess, S. C., J. R. Young, B. J. G. Baaten, L. Hunt, L. N. J.
Ross, M. S. Parcells, P. M. Kumar, L. F. Lee, and T. F. Davi-
son. 2004. Marek’s disease is a natural model for lymphomas
over-expressing Hodgkin’s disease antigen (CD30). Proc.
Natl. Acad. Sci. USA 101:13879–13884.

Burnside, J., E. Bernberg, A. Anderson, C. Lu, B. C. Meyers,
P. J. Green, N. Jain, G. Isaacs, and R. W. Morgan. 2006.
Marek’s disease virus encodes microRNAs that map to meq
and the latency-associated transcript. J. Virol. 80:8778–8786.

Burnside, J., P. Neiman, J. Tang, R. Basom, R. Talbot, M. Arons-
zajn, D. Burt, and J. Delrow. 2005. Development of a cDNA
array for chicken gene expression analysis. BMC Geno-
mics 6:13.

Burt, D. W. 2004. The chicken genome and the developmental
biologist. Mech. Dev. 121:1129–1135.

Burt, D. W. 2005. Chicken genome: Current status and future
opportunities. Genome Res. 15:1692–1698.

Burt, D. W. 2007. Emergence of the chicken as a model organ-
ism: Implications for agriculture and biology. Poult. Sci.
86:1460–1471.

Butcher, E. C., E. L. Berg, and E. J. Kunkel. 2004. Systems
biology in drug discovery. Nat. Biotechnol. 22:1253–1259.

Bystrykh, L., E. Weersing, B. Dontje, S. Sutton, M. T. Pletcher,
T. Wiltshire, A. I. Su, E. Vellenga, J. Wang, K. F. Manly, L.
Lu, E. J. Chesler, R. Alberts, R. C. Jansen, R. W. Williams,
M. P. Cooke, and G. de Haan. 2005. Uncovering regulatory
pathways that affect hematopoietic stem cell function using
’genetical genomics.’ Nat. Genet. 37:225–232.

Caldwell, R. B., A. M. Kierzek, H. Arakawa, Y. Bezzubov, J.
Zaim, P. Fiedler, S. Kutter, A. Blagodatski, D. Kostovska,
M. Koter, J. Plachy, P. Carninci, Y. Hayashizaki, and J. M.
Buerstedde. 2004. Full-length cDNAs from chicken bursal
lymphocytes to facilitate gene function analysis. Genome
Biol. 6:R6.

Carlborg, O., L. Jacobsson, P. Ahgren, P. Siegel, and L. Anders-
son. 2006. Epistasis and the release of genetic variation dur-
ing long-term selection. Nat. Genet. 38:418–420.

Carlborg, O., S. Kerje, K. Schutz, L. Jacobsson, P. Jensen, and
L. Andersson. 2003. A global search reveals epistatic interac-
tion between QTL for early growth in the chicken. Genome
Res. 13:413–421.
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