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Evaluation of Multispectral Data for Rapid Assessment of Wheat Straw Residue Cover

D. G. Sullivan,* J. N. Shaw, P. L. Mask, D. Rickman, E. A. Guertal, J. Luvall, and J. M. Wersinger

ABSTRACT share programs, such as the Environmental Quality In-
centives Program (EQIP). According to the 1985 FoodCrop residues influence near surface soil organic carbon (SOC)
Security Act, lands considered ‘highly erodible’ mustcontent, impact our ability to remotely assess soil properties, and play

a role in global carbon budgets. Methods that measure crop residues implement an acceptable conservation program to re-
are laborious, and largely inappropriate for field-scale to regional main eligible for farm benefits. Furthermore, cost-share
estimates. The objective of this study was to evaluate high spectral recipients for reduced tillage systems must maintain a
resolution remote sensing (RS) data for rapid quantification of residue minimum of 30 to 50% crop residue cover to receive pro-
cover. In March 2000 and April 2001, residue plots (15 by 15 m) were gram reimbursements. Current line-transect techniques
established in the Coastal Plain and Appalachian Plateau physio- are labor intensive and accuracy is often a function of
graphic regions of Alabama. Treatments consisted of five wheat (Triti-

line length and the number of data points collected.cum aestivum L.) straw cover rates (0, 10, 20, 50, and 80%) replicated
Remote sensing techniques using high spatial and spec-three times. Spectral measurements were acquired monthly via a hand-
tral resolution sensors may facilitate field-scale and re-held spectroradiometer (350–1050 nm) and per availability via the
gional crop residue cover assessment.Airborne Terrestrial Applications Sensor (ATLAS) (400–12 500 nm).

Overall, treatment separation was influenced by soil water content Unlike growing vegetation, there is a general lack
and percentage of total organic carbon (TOC) of the residue (degree of information regarding spectral signatures associated
of decomposition). Results showed that atmospherically corrected with decaying crop residues. However, a fundamental
visible and near-infrared ATLAS data can differentiate between resi- understanding of molecular functional groups in grow-
due coverages. Similar results were obtained with the handheld spec- ing and senescent vegetation provides a foundation for
troradiometer, although treatment differentiation was less consistent. addressing residue spectra. Functional groups present in
Thermal infrared ATLAS imagery best discriminated among residue

plant material, such as CH3, OH, and H2O, significantlytreatments due to differing heat capacities between soil and residue.
affect spectral response properties via the presence of ab-Results from our study suggest airborne thermal infrared (TIR) imag-
sorption bands within the 700- to 2600-nm range (Murrayery can be used for crop residue variability assessment within the
and Williams, 1988). During the initial stages of tissuesoutheastern USA.
chlorophyll loss, spectral response is greatest from 400
to 800 nm, as senescent plant tissues absorb incoming
blue (300–400 nm) and red (500–600 nm) spectra whileAdoption of minimum tillage with residue manage-
reflecting green (400–500 nm). Presence of water at thisment strategies has been widely associated with
stage masks absorbance features in the near infraredimprovements to soil quality. Crop residue management
(NIR) associated with lignin and cellulose (Elvidge, 1990).enhances soil quality primarily through the accumula-
As decay progresses, the relative abundance of lignintion of SOC. Benefits attributable to residue manage-
and cellulose present is evidenced by broad absorptionment include reduced erosion, improved infiltration, and
bands throughout the 400- to 900-nm spectral regionsoil aggregation (Prasad and Power, 1991). Since 33%
(Elvidge, 1990).of agricultural lands in the USA have been classified

Studies conflict regarding the use of remote sensingas highly erodible, residue management can effectively
data to reliably differentiate between residue and soil.reduce erosion and off-site transport of nutrients and
Early attempts to differentiate between soil and residuepesticides (USDA, 1995; McMurtrey et al., 1993; Lal
spectra showed differences in spectral reflectance wereand Kimble, 1997). A rapid method of monitoring field-
greatest in the NIR (Gausman et al., 1973; Aase andscale distribution of residue cover could help better
Tanaka, 1991). These results are in congruence with aestablish the benefits of conservation tillage to soil and
similar study conducted by McMurtrey et al. (1993).water quality.
McMurtrey et al. (1993) developed a vegetation indexProblems with field-scale residue coverage assessments
using spectrophotometer data of five different crop resi-arise because obtaining spatially representative estimates
dues and four different soil types. McMurtrey et al.of residue cover in a timely and cost efficient manner
(1993) found reflection at 450, 660, and 830 nm capturedis difficult. Cover estimates are increasingly important
most differences between soil and crop residue spectradue to eligibility and compliance with government cost-
in a laboratory setting. In another study, Daughtry et al.
(1995) utilized reflectance data to distinguish between
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Sand Mountain AAES Research and Extension Centerage. Nagler et al. (2000) applied the cellulose absorption
(85�57�39″ W, 34�16�41″ N). Soils classify as fine-loamy, sili-index (CAI) developed by Daughtry et al. (1996) to
ceous, subactive, thermic Typic Hapludults. Soils formed fromdifferentiate among residue samples arranged on a black
acid sandstone residuum and typical epipedons have a sandy45 by 45 by 2.5 cm plate using a controlled illumination
loam/loam texture. Most of the sampling area is typicallysource. As residue decomposed, CAI values decreased. cropped to corn.

Findings were confounded by water, litter type, and de- Wheat straw residue applications were designed to mimic a
composition stage. More recently, Daughtry (2001) used conventional double-cropped system (wheat–cotton or wheat–
the CAI to differentiate between spectral response pat- soybean] to evaluate residue spectra during periods of minimal
terns of corn (Zea mays L.), soybean (Glycine max L.), warm season crop cover. Plots (15 by 15 m) were established

on weed-free, fresh-tilled surfaces in March 2000 and repeatedand wheat residue and five soil types at different soil
in April 2001. Pre- and postemergent herbicides were used towater contents. Samples were arranged in 45-cm square
control weeds and grasses. Residue cover was calculated ontrays consisting of soil or residue, mixed scenes of soil
a mass basis as a percentage of the amount of residue necessaryand residue were then simulated. Daughtry (2001) was
for complete ground cover. Treatments consisted of five resi-able to discern the relative amount of residue present,
due cover rates (0, 10, 20, 50, and 80%) arranged in a com-via a positive CAI value. Although moist conditions pletely randomized design. A digital camera was used to ac-

yielded lower CAI values for residue, the CAI for soil quire images of each plot at inception and classified in 2000 to
remained constant. ensure treatment coverages were met. Monthly digital images

Laboratory and field studies have had some success were taken in 2001 to monitor changes in residue cover over
differentiating among residue coverages based on spec- the year, and average estimates of cover per treatment were

used in regression analysestral response patterns. Under controlled laboratory con-
ditions, properly calibrated red and NIR spectra may
differentiate among degrees of residue cover. Thermal Laboratory
infrared spectra also show promise as a new method for Composite soil samples were collected within each plot at
assessing field scale variability in crop residue coverage. the onset of the study (0–1 cm) before residue application to
However, due to the expense associated with high-reso- determine near-surface soil properties. Soils were air-dried
lution TIR imagery, little has been done to investigate and sieved to pass a 2-mm sieve. Analyses included total C
TIR as an alternate method of crop residue assessment. via dry combustion on pulverized samples, citrate-dithionite

extractable Fe (Jackson, 1975), and particle-size distributionRapid assessment of residue cover is particularly impor-
on the �2-mm fraction (Kilmer and Alexander, 1949). Neartant in the southeastern USA where residue manage-
surface soil attributes were similar across sites differing pri-ment may significantly impact soil quality and sustain-
marily by silt and sand content, with Appalachian Plateauability of these highly weathered soil systems. Thus, the
soils having greater silt content and lesser amounts of sandgoals of this study are two-fold: (i) evaluate handheld
(Table 1). Near-surface samples (0–1 cm) coincident with eachradiometer data and atmospherically corrected airborne remotely sensed data acquisition were also collected for gravi-

imagery as a means to assess ground cover at a large metric water content (�g).
plot scale, and (ii) evaluate high spectral resolution TIR Surface residues were sampled monthly, weighed, dried,
spectra as a method for depicting crop residue coverage and reweighed for water content. A separate sample was col-
at a large plot scale. lected for C content as a means to assess residue decomposi-

tion. Samples for C content were collected bimonthly via fis-
tula bags (10 � 20 cm), which were filled with straw and stakedMATERIALS AND METHODS
within each plot at the onset of the study. Wheat straw was
dried and roll ground for total C content via dry combustionStudy Sites
of a 0.06- to 0.16-g sample using a LECO CHN-600 analyzer

Study sites were located in two physiographic provinces of (Leco Corp., St. Joseph, MI).
Alabama. The Coastal Plain study site was located in Headland,
AL, at the Alabama Agricultural Experiment Station (AAES)
Wiregrass Research and Extension Center (85�19�03″ W, Sensors
31�21�56″ N). Soils formed in sandy and loamy fluvial-marine GER 1500 Spectroradiometersediments and classify predominantly as fine-loamy, kaolinitic,
thermic Plinthic and Typic Kandiudults. Epipedons in this Reflectance measurements were collected monthly April

through June and October through December, on clear daysregion were predominantly loamy sand texture. This region
is intensively cropped to peanuts (Arachis hypogaea), cotton using a hand-held GER 1500 spectroradiometer (GER Corp.,

New York). The GER 1500 uses a diffraction grating of silicon(Gossypium hirsutum L.), and corn. The second study site was
located in the Appalachian Plateau near Crossville, at the photo diodes with 512 individual detectors, and collects data

Table 1. Mean and standard deviations of near-surface soil properties (0–1 cm) observed at the Appalachian Plateau and Coastal Plain
study sites.

Soil property

Site Sand Silt Clay SOC Fed‡

%
Appalachian Plateau 55.5 (1.20)† 37.8 (1.13) 6.7 (1.14) 0.57 (0.03) 0.21 (0.01)
Coastal Plain 79.6 (0.92) 12.6 (0.44) 7.9 (0.73) 0.53 (0.02) 0.25 (0.02)

† Standard deviations are given in parentheses.
‡ Citrate-dithionite extractable Fe.
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between 350 to 1050 nm in 1.5-nm increments. Wavelengths angles: before nadir, at-nadir, and after nadir. Regularity of
utilized in this study encompassed the 520- to 900-nm spectrum radiative transfer characteristics as functions of angle then
to coincide with the spectral band passes of the ATLAS. Plot permitted estimates to be obtained for all other angles of
data were collected as close to solar noon as possible under interest. The MODTRAN values are then integrated over the
clear conditions. Measurements were taken at nadir, within sensor band passes. Thus unique atmospheric correction terms
an 8� field of view, from a distance of 2.4 m above ground to are available for each flight line segment as functions of angle
approximate a spatial resolution of 0.30 m2. Data collection from nadir. The calibrated value for each pixel was then inte-
consisted of five measurements from within each plot. Mea- grated with the MODTRAN estimate of atmospheric trans-
surements were converted to percent reflectance based on the missivity and “additive path radiance” as functions of angle
reflectance properties of a spectralon reference plate. The from nadir. Energy at target can be calculated by rearranging
spectralon reflectance plate was placed horizontally on the and solving the basic equation:
ground outside of each plot. Reference data were collected

Es � Et t � EA, [1]from a distance of approximately 25 cm from the spectralon
plate. where Es equals energy at sensor, Et equals energy at target, t

equals transmissivity, and EA equals “additive path radiance”
Airborne Terrestrial Applications Sensor (ATLAS) which can be either true radiance and or scattered energy

depending on wavelength. For a detailed description of theThe ATLAS multispectral scanner acquired data onboard
atmospheric algorithm and physics the reader is referred toa Lear jet flown at approximately 1400 m. Airborne Terrestrial
Rickman et al. (2000) or Schiller and Luvall (2000).Applications Sensor collects data in 15 nominal bands ranging

Airborne Terrestrial Applications Sensor data were ac-from 400 to 12 500 nm, with an approximate spatial resolution
quired for each site close to solar noon, under clear conditionsof 2.5 m at nadir, and a 72� field of view (Birk, 1992) (Table 2).
on 2 June 2000 and 30 July 2001. Observations from theSimultaneous with acquisition the system records 6� of geo-
Coastal Plain site were limited to the 2000 data acquisition.metric data: latitude, longitude, pitch, roll, altitude, and head-
Pixels lying completely within each plot were extracted, withing. The onboard radiometric calibration subsystem consisted
each plot consisting of 16 pixels. Surface features and atmo-of three active sources: integrating sphere, hot black body,
spheric attributes were assumed to be equal within each plot,and cold black body. These are referenced on each revolution
thus the distribution of pixel values about mean plot valuesof the scan mirror. Data from the active calibration sources
and percentage of coefficients of variation (CV) were used towithin the sensor were used to develop a system transfer
assess sensor noise. Based on this analysis, during the 2000function on a per scan line basis. The specific technique used
acquisition �5% of the pixels sampled in most bands wereaccounts for sensor drift while eliminating high frequency
greater than two standard deviations from mean plot values.noise. The result of this process converts each of the original

airborne measurements recorded in eight bits per pixel to However, in 2001, the percentage of pixels falling greater than
units of Watts cm�2 sr�1 of known irradiance at the sensor. two standard deviations from mean plot values was greater

Atmospheric corrections were done using a radiative trans- than in 2000. Coefficients of variation within plots were gener-
fer algorithm developed by NASA (Rickman et al., 2000; Schil- ally �10% in 2000, but as high as 36% in 2001. Furthermore,
ler and Luvall, 2000). To accomplish this correction the soft- % CV showed that ATLAS bands 1 (450–520 nm) and 8
ware uses the relative positions of the target, sun, and aircraft (2080–2350 nm) exhibited the most variability in 2000 and
for each pixel and adjusts the atmospheric correction accord- bands 1 to 3 within the 450- to 630-nm range were most variable
ingly. The algorithm used radiative transfer characteristics in 2001. In 2001, ATLAS Bands 3 (600–630 nm) and 10 (8200–
modeled with MODTRAN. Model inputs to MODTRAN in- 8600 nm) were faulty and excluded from analyses.
cluded radiosonde data obtained via the National Climatic
Data Center, sensor attributes and location specific variables Statistical Analysissuch as altitude, orientation, visibility, and time. Post acquisi-
tion the flights were manually divided into straight line seg- Multivariate spectral data were first subject to band selec-
ments by visual inspection. Segments had �5� of departure tion using a principal components analysis (PCA), since data
from a straight line over total length. For each “straight path” encompassed multiple bands within the red, NIR, and TIR
flight segment MODTRAN estimates of transmittance and spectrum. Next, Duncan’s least significant difference routine
path radiance or single path scattering were generated. For was used to delineate significant spectral differences (	 �
each band, estimates are made at three different viewing 0.10) and determine the magnitude of spectral differences

between treatments. Based on these results, stepwise linear
Table 2. Specifications for the Airborne Terrestrial Applications regression analysis was used to determine the degree of vari-

Sensor (ATLAS) (2.5-m spatial resolution). ability in wheat straw residue that could be explained via
remotely sensed data.Wavelength Band Spectrum region

nm
450–520 B1 visible-blue RESULTS AND DISCUSSION
520–600 B2 visible-green
600–630 B3 visible-red Spectroradiometer Data630–690 B4 visible-red
690–760 B5 visible-red Spectral Response Curves760–900 B6 near infrared
1 550–1 750 B7 middle infrared Spectral response curves (520–900 nm) were evalu-2 080–2 350 B8 middle infrared

ated for each site and date. Spectral response patterns8 200–8 600 B10 thermal infrared
8 600–9 000 B11 thermal infrared typical of living plant tissue were absent in residue.
9 000–9 400 B12 thermal infrared Instead, spectral response patterns of residue were simi-9 600–10 200 B13 thermal infrared
10 200–11 200 B14 thermal infrared lar to the soil spectral response line, with reflectance in-
11 200–12 200 B15 thermal infrared creasing without inflection throughout the VIS and NIR
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Fig. 2. Average C content of wheat straw at various sampling times
in 2000 at the Coastal Plain and Appalachian Plateau study sites.

than twice that observed under wetter conditions (�g 

10%). Residue degradation also impacted spectral re-
sponse patterns. Throughout the growing season, the
total C content (TC) of residue gradually declined from
50 to �25% TC, suggesting decomposition of residue
(Fig. 2). Residue cover differences were best observed
during late-spring and fall, and related to decompositionFig. 1. Spectral response curves for each residue coverage as mea-
of residue as treatment differences were best when resi-sured via a handheld spectroradiometer at the (A) Coastal Plain

and (B) Appalachian Plateau study sites with corresponding total due TC � 25%.
reflectance obtained via a spectralon reference plate at the (C) These data suggest that differences in the intensity
Appalachian Plateau for two periods in 2000.

of spectral response are critical to accurately depict the
variability in residue coverage. Furthermore, differences(Fig. 1). Spectral response patterns were relatively con-
in near-surface soil attributes impact the relative magni-sistent between sites and dates, but the magnitude of
tude of spectral response. Soils in this study were domi-reflected energy varied. Conditions such as incoming
nated by sandy surfaces, predominately composed ofradiant energy, water content, and residue decomposi-
quartz, and had similar spectra compared with freshtion at the time of RS data capture contributed to this
residue (Table 1); however, as residue degradation pro-variability. Analysis of total reflected energy from the
gressed, spectral differences between residue and soilspectralon reference plate provides evidence of differing
became more evident.atmospheric conditions, which were of a significant mag-

nitude to elicit changes in the “at-sensor” reflectance prop-
Residue Coverageerties. Data acquired in June and October 2000 for the

Appalachian Plateau site exemplify differences in atmo- Differentiation between residue treatments was best
observed using a combination of bands in the 600- tospheric conditions via a change in total reflected energy

from the spectralon reference plate (Fig. 1). No differ- 760-nm range (red–NIR). These results are consistent
with previous studies, indicating red and NIR spectraences in soil water content were observed between treat-

ments during any one data acquisition; however, dif- best differentiate between residue cover differences (Bi-
ard and Baret, 1997; Nagler et al., 2000). Results showedferences in average soil water content were observed

between RS data acquisitions, particularly at the Appa- that spectroradiometer data, at the spectral and spatial
resolution used, could differentiate between plots re-lachian Plateau site. Increasing soil water content tends

to darken surfaces and reduce the amount of reflected ceiving 20, 50, and 80% residue cover (Fig. 3). The rel-
ative magnitude of difference between bare soil plotsenergy, as a greater proportion of radiant energy is ab-

sorbed by the surface (Capehart and Carlson, 1997). This and treatment plots varied during the collection period,
with the greatest differences among treatments occurringwas observed in the 2000 Appalachian Plateau data set

where average reflectance (600–630 nm) of bare soil plots during the October collection period, when TC content
of the residue was �25%.ranged from 15 to 34% with peak reflectance during

periods of low soil water content (�g � 2%) being more Using a combination of red and NIR spectra in step-
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factors for each band (ranging from 25 to 29%). Thus,
analyses concentrated on bands that best differentiated
between residue treatments, instead of bands that best
described data variability. In most cases, reflectance
within the 600- to 760-nm range and emittance in the
8200- to 9600-nm range best differentiated between
treatments.

Spectral Response Curves

Visible and NIR spectral response patterns were simi-
lar to the bare soil line, differing only in magnitude of
spectral response. Reflectance in the VIS portion of
the spectrum slowly increases to a peak reflectance at
approximately 760 nm, and then declines rapidly into
the middle infrared regions (Fig. 4). Unlike VIS and
NIR spectra, TIR spectral response curves differed in
slope and magnitude of response when compared with
the bare soil line. With �20% residue cover, soil spectral
response dominated the shape of the spectral response
curve with plots receiving residue distinguishable only
by magnitude of spectral response (Fig. 4). However,
as the amount of residue cover increased, the slope ofFig. 3. Effects of wheat (Triticum aestivum L.) straw surface coverage
the residue line for plots receiving 50 or 80% coveron reflectance measured by a handheld spectroradiometer at the
becomes positive in the 8200- to 8600-nm region andAppalachian Plateau in June and October of 2000.
levels off in the 8600- to 9200-nm region. Beyond this

wise regression improved our ability to depict differ- point, emittance decreases rapidly and residue cover
ences in residue cover at each site. At the Coastal Plain treatments are mostly indistinguishable.location, a stepwise linear regression explained 69 to
82% of the variability in residue cover in 2000 and 65 Residue Coverageto 72% of the variability in 2001 (Table 3). Spectroradi-
ometer data acquired from the Appalachian Plateau During the 2000 data acquisition at the Appalachian
study site accounted for 73 to 86 and 43 to 86% of the Plateau site, reflected red energy in three different
variability in 2000 and 2001, respectively (Table 3). ATLAS bands successfully differentiated between plots

receiving 10, 20, 50, and 80% cover (Fig. 5). Results
ATLAS Multispectral Scanner from this study were based on atmospherically corrected

ATLAS data, which facilitates the detection of differ-Using all ATLAS bands, the first principal compo-
nent explained 85% of the variance, with similar loading ences between near surface attributes with similar spec-

Table 3. Stepwise linear regression parameters (p � 0.10) used to predict wheat (Triticum aestivum L.) straw cover based on percentage
of reflectance from select spectroradiometer bands within the red and NIR regions for the Coastal Plain study site.

Coastal Plain Appalachian Plateau

Date Wavelength Slope Intercept R 2 Wavelength Slope Intercept R 2

nm nm
Apr-00 630–690 �39.13 NS NS NS NS

690–760 34.21 38.10 0.80
May-00 600–630 �27.96 NS NS NS NS

690–760 21.59 48.42 0.82
Jun-00 NS† NS NS NS 600–630 �34.41

690–760 28.22 47.42 0.80
Oct-00 600–630 �48.41 600–630 �0.34 115.51 0.86

690–760 41.11 17.93 0.69
Nov-00 600–630 �3.73 107.90 0.76 600–630 �70.65

630–690 60.53 90.68 0.73
Dec-00 600–630 �55.66 NS NS NS NS

630–690 51.54 30.56 0.77
Apr-01 NS NS NS NS NS NS NS
May-01 600–630 �14.20 NS NS NS NS

690–760 14.86 �65.48 0.65
Jun-01 NS NS NS NS 600–630 �14.95

630–690 13.60 50.40 0.86
Oct-01 600–630 �17.95 600–630 �8.68

690–760 15.61 53.58 0.66 690–760 6.88 52.52 0.67
Nov-01 600–630 �20.28 600–630 �2.21 91.26 0.80

690–760 15.88 71.43 0.72
Dec-01 600–630 �33.65 600–630 �4.08 116.09 0.43

690–760 28.06 33.78 0.72

† NS indicates no significant regression relationship was observed.
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Fig. 4. Spectral response curves for each residue coverage as mea-
sured by the Airborne Terrestrial Applications Sensor (ATLAS)
in the visible and near-infrared (A) and thermal infrared (B).

tral responses. In 2001, treatment differentiation of straw
coverage was less clear and airborne RS data differenti-
ated only between light (�20%) and heavy (
50%)
cover treatments. A comparison of RS datasets acquired
during a relatively dry year (2000) and a relatively wet
year (2001) exemplify differences in spectral response
associated with soil water content. In 2001, treatment Fig. 5. Effects of wheat (Triticum aestivum L.) straw surface coverage
separation was limited by higher soil water content (�g � on spectral response measured by the Airborne Terrestrial Applica-
9.9%) compared with relatively drier (�g � 1.2%) sur- tions Sensor (ATLAS) at the Appalachian Plateau site during the

June 2000 data acquisition.face conditions in 2000. Near-surface water absorbs a
greater proportion of energy, thereby reducing the mag-
nitude of difference in reflected energy for each treat- site. Thermal infrared spectra resulted in r 2 peaking at
ment (Capehart and Carlson, 1997). At the Coastal Plain 0.98 and 0.83 in 2000 and 2001, respectively (Table 4).
site, ATLAS Band 6 (red) best distinguished between 20, Visible-red spectra were also useful, accounting for as
50, and 80% cover, with no treatment differences be- much as 98% of the residue variability in 2000 and 74%
tween 0, 10, and 20% cover. of the residue variability in 2001. Under relatively dry

In 2000, TIR successfully differentiated between all conditions in 2000, TIR data explained 95% of the resi-
cover treatments at both locations (Fig. 5). Results from due variability at the Coastal Plain site while, VIS-red
the Appalachian Plateau site for 2001 showed TIR was spectra accounted for 77–81% of the variability in resi-
only able to differentiate among 0, 20, and 80% cover due cover (Table 4).
treatments, possibly due to relatively higher soil water
content at the time of data acquisition (data not shown). CONCLUSIONOur results demonstrate that lower heat capacities of
organic materials, such as residue, resulted in greater Results demonstrate the utility and potential limita-

tions associated with using handheld or airborne RS dataemittance as residue coverage increased (Campbell, 1996).
As a result, temperature differences between treatments to depict differences in residue coverage. Typical residue

spectral response curves in the VIS and NIR regions ofassociated with contrasting heat capacities of straw and
bare soil likely facilitated in situ residue evaluation. the spectrum differed from bare soil spectra mostly in

magnitude of spectral response. Residue cover separa-Regression analyses confirmed that a highly signifi-
cant linear relationship (P � 0.0001) existed between tion was partially a function of straw decomposition,

and soil water content at the time of acquisition. As resi-emittance and residue cover at the Appalachian Plateau
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Table 4. Regression parameters (p � 0.10) relating wheat (Triticum aestivum L.) straw cover (0, 10, 20, 50, and 80%) to reflected or
emitted energy (Watts cm�2 sr�1 �m�1) acquired via the Airborne Terrestrial Applications Sensor (ATLAS). Data were acquired for
the Coastal Plain (2000) and Appalachian Plateau study sites (2000 and 2001).

Coastal Plain Appalachian Plateau

Year Wavelength Slope Intercept R 2 Wavelength Slope Intercept R 2

nm nm
2000 600–630 37 651 �225.03 0.71 600–630 �31 153 422.23 0.98

630–690 28 510 �181.85 0.77 630–690 �33 898 493.45 0.98
690–760 26 398 �162.06 0.79 690–760 �18 384 315.32 0.97

8 200–8 600 535 514 �586.98 0.95 8 200–8 600 503 046 �534.17 0.98
8 600–9 000 444 929 �484.15 0.95 8 600–9 000 437 690 �465.69 0.97
9 000–9 400 574 441 �643.36 0.95 9 000–9 400 525 612 �570.53 0.97

2001 600–630 NS NS NS
630–690 �9 092.00 106.97 0.70
690–760 �11 001 133.52 0.74

8 200–8 600 NS NS NS
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