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STOCHASTIC SIMULATION OF STORM OCCURRENCE, DEPTH,
DURATION, AND WITHIN−STORM INTENSITIES

J. V. Bonta

ABSTRACT. Newer watershed models require detailed continuous temporal precipitation to drive modeled hydrologic pro-
cesses. The variability of precipitation inputs to models is a major source of variability in watershed flows that is often evaluat-
ed in the context of risks. However, available short−term−increment rainfall data are not adequate. A storm−generator model
(StormGen) that synthesizes storms directly (several storms per day to several days per storm) was developed and tested using
precipitation data from Coshocton, Ohio. The concepts for modeling the four elements of actual storms (storm occurrence,
storm duration and depth, and within−storm intensities) and storm−model characterization and parameterization using an
empirical and statistical approach are presented. Supporting studies have been conducted to help with practical parameter-
ization in ungauged areas. Times between storms (TBS) are represented and simulated well by exponential distributions. Storm
durations are characterized by empirical distributions of durations in a month. Storm depths require conditional simulation
given storm durations. Within−storm intensities utilize probabilistic information contained in Huff curves. Initial perfor-
mance evaluation of three of the elements of the model for a 200−year simulation shows that the model works well. TBS was
modeled best (monthly average deviation of −1.3%, with values ranging from −3.2% to 3.0%). Monthly average storm dura-
tion deviations ranged from −6.2% to +1.6% with an average of −1.3%. Monthly average storm depth deviations ranged from
−17.1% to +0.1% with an average of −9.2%, although actual magnitudes ranged only from −2.2 to 0 mm. Average deviations
between simulated and measured average monthly precipitation was +1.7%, ranging from −8.6% to +12.6%. Corresponding
depth differences ranged from −10.0 to 10.8 mm, with an average of +0.5 mm. Total simulated precipitation for the entire
period deviated from measured precipitation by +0.6%, corresponding to +0.5 mm. The Poisson assumption for statistical
independence of storms in the model is validated using Coshocton data, with the ratio of average storm duration to average
TBS of only 0.107. The results of this study suggest that the StormGen model is promising and that modeling concepts and
characterization deserve further investigation.

Keywords. Disaggregation, Drought, Storm depth, Storm duration, Storm generator, Storm simulation, Storm synthesis, Time
between storms.

atershed models are required for engineering
design for runoff and erosion control, water−
quality evaluations, and global−change inves-
tigations. These models are becoming more

sophisticated and require detailed continuous temporal and
spatial inputs of precipitation to drive the modeled hydrolog-
ic processes. The variability of precipitation and weather in-
puts to models is a major source of variability in outputs from
watershed models. These outputs are often evaluated in the
context of risks, frequencies of occurrence, and durations of
exceedance of flow and water−quality constituents. Particu-
larly needed are long records of data having short time incre-
ments (of the order of minutes) with fine depth resolution for
advanced infiltration modeling, routing, and water−quality
algorithms. However, such records that include measured
precipitation extremes are generally unavailable, or they do
not have good spatial coverage.
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Precipitation and weather data for natural−resource
models often use records of data collected over a 24 h period.
These data can be measured from midnight to midnight, from
0800 to 0800, or between other observation times. When
using these data, the actual observations times are ignored
and data are often assumed to have occurred from 2400 to
2400, even though they were not measured during this time.
“Daily” data with varying observation times lead to tempo-
rally and spatially noncomparable data sets for analyses that
often are ignored.

Weather generators, e.g., GEM (Hanson et al., 1989, 1994,
2002) and CLIGEN (Nicks et al., 1995), can supply
temporally distributed stochastic estimates of precipitation,
but the smallest time resolution is 24 h. This is because these
models are parameterized using the 24 h amounts described
above. Stochastically generating storm hyetographs given a
24 h total generated by these models is complicated, because
a single storm can span a 24 h period, several storms can
comprise a 24 h total, or both situations can occur.
Stochastically disaggregated 24 h amounts depend on
quantification  of serial dependence from one day to the next,
which is difficult to accomplish. CLIGEN incorporates a 24 h
disaggregation algorithm that simulates storm duration, time
to peak, and peak intensity (Yu, 2000).

Typically, engineers resort to “design storms” to disaggre-
gate daily−total precipitation to estimate within−storm
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intensities because of the unavailability of short−time
increment precipitation data. However, design storms are
fixed patterns of precipitation distributed in time, and do not
represent the wide random variability of storms found in
nature. Design storms require subjective assumptions regard-
ing the equivalence of precipitation and flow frequency
distributions, and they require assignment of the duration of
precipitation,  season of year, and antecedent moisture
condition. Design storms are inappropriate for thoroughly
analyzing watershed model outputs in terms of flow dura-
tions, load durations, and extremes. Consequently, stochastic
synthesis of a continuous record of storms is an attractive
alternative,  and would eliminate the 24 h and design−storm
constraints. Use of a storm model would allow generation of
a time series of precipitation for locations for which data do
not exist, and is the subject of this article.

Many stochastic models of the precipitation process have
been developed through the years (Bras and Rodriguez−
Iturbe, 1976; Corotis, 1976; Cox and Isham, 1998; Crovelli,
1971; Grace and Eagleson, 1966; Knisel and Snyder, 1975;
Marien and Vandewiele, 1986; Morris, 1980; Morrison and
Smith, 2001; Nguyen and Rousselle, 1981; Pattison, 1965;
Rao and Chenchayya, 1974; Raudkivi and Lawgun, 1974;
Todorovic and Woolhiser, 1974; Valencia and Schaake,
1973; Woolhiser and Osborn, 1985). A review of the
literature reveals that stochastic rainfall generation models
can be categorized in many ways including: degree of
incorporation of season/time of year, whether the model is
concerned with extreme precipitation or all precipitation,
degree of autoregressive characterization, incorporation of
space and time or just time at a point, sequences conditioned
on whether a day/period was wet or dry, differing degrees of
incorporation of storm occurrence, storm depth and duration,
and within−storm intensities, many incorporate some form of
the Poisson−process assumption, whether the model is
characterized  deterministically or probabilistically, fineness
of short−time−increment rainfall, and number of parameters.
Of particular interest are the varying approaches to models of
within−storm intensities by Woolhiser and Osborn (1985),
Knisel and Snyder (1975), Over and Gupta (1996), and Grace
and Eagleson (1966). These approaches include cascades,
probabilistic characterization of the progression of intensi-
ties, and an urn model. No models incorporate snowfall, and
none have extensive supporting studies for general practical
characterization  in areas without data.

A stochastic storm generator (StormGen) has been
developed at the USDA Agricultural Research Service
(ARS) North Appalachian Experimental Watershed
(NAEW) facility at Coshocton, Ohio. It stochastically
simulates the four basic elements of storms at a point: storm
occurrence (dry time since the end of the previous storm to
the beginning of the next storm), storm duration, storm depth,
and short−time increment (of the order of minutes) within−
storm precipitation intensities. The model incorporates
improved features of some models found in the literature and
new concepts for storm modeling. It has been developed
simultaneously with supporting studies of characterization to
make it practical for ungauged areas, and to help guide the
modeling concepts. Additionally, the effect of time of year is
also incorporated by using a monthly time step for character-
ization and simulation. This article is part of a larger project
to develop a practical spatial−temporal storm model.

OBJECTIVES AND SCOPE
The objectives of this study are to: (1) present the

modeling concepts for development of a stochastic storm
generator that removes the 24 h precipitation−total constraint
and simulates storms, (2) present concepts for characterizing
and parameterizing the model, and (3) conduct a preliminary
evaluation of model performance. The version of StormGen
described is version 2004.01. A more comprehensive
application and testing of StormGen for individual storm
elements in other climates is subject of other articles.

PROCEDURE
GENERAL APPROACH

The approach is statistical and empirical, and does not
include storm physics. Four tasks comprise the present study:
(1) identifying storms in a precipitation record, (2) character-
izing and developing frequency distributions of storm
duration and depth data, (3) developing a conceptual and
mathematical  model, and (4) conducting preliminary tests of
the model performance. The storm model and characteriza-
tion methods were developed simultaneously to maximize
the practicality of the model for ungauged areas. Many
supporting studies have been conducted to aid in practical
parameterization  (Bonta, 2001, 2003, 2004). Guiding prin-
ciples for simplified parameterization include minimization
of the number parameters and selection of parameters that
could be used for global−change studies.

The underlying assumption in the model is that storm
events follow a time−varying Poisson process, with exponen-
tially distributed interarrival times. The validity of this
assumption will be discussed later. While this process varies
in time, monthly characterization and simulation assumes
stationarity within a month. A monthly time step minimizes
data characterization needed for the model, yet allows
seasonal characterization of precipitation. Monthly frequen-
cy distributions and their parameters comprise the majority
of the information required to run the model.

The model has been developed so that optimization and
calibration of the model are not necessary. However,
empirical data are used to develop parameters. Current
studies involve developing relationships to estimate these
parameters in the absence of data and evaluating the
robustness of the characterization methods.

A previous simulation study with the model investigated
interpolation methods to smoothly vary simulation between
months for the underlying distributions of storm occurrence,
durations, and depths (Bonta, 1998). Interpolation would
avoid possible sudden changes in statistical characteristics in
modeled output because of changes in monthly frequency
distributions due to local climate. A combination of no
month−to−month storm−duration and TBS interpolations,
and simple semilog interpolation between storm−depth
distributions for a given month yielded optimal modeling
results.

In the present study, each storm element, the methods of
characterizing,  parameterizing, and interpolating each ele-
ment, and the simulation concepts are presented. Only
preliminary model performance evaluation of storm occur-
rence and storm depths and durations are studied, and
evaluation of the within−storm simulation is not included.
Evaluation of the simulation performance of within−storm
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intensities is the subject of another article. Comprehensive
model performance evaluation of the four elements of the
model in different climates will also be reported in other
articles. Evaluation factors in the present study include
comparison of measured and simulated frequency distribu-
tions, monthly totals, and period totals of precipitation.

DATA USED

Data from rain gauge RG100 at the NAEW facility are
used to illustrate the proposed concepts of the storm
generator. Data from this gauge are tabulated at changes in
precipitation intensity (“breakpoint” data) for the 61−year
period of record from 1937 through 1997. The depth
resolution of the Coshocton data is 0.01 in (0.25 mm), and the
time resolution is 1 min. Average annual precipitation for
RG100 at Coshocton, Ohio, is 950 mm. Only the months of
April through October (referred to as the “period”) are used
to minimize the possibility of including snowfall, which must
be treated separately. Average precipitation for the period is
602 mm.

CHARACTERIZATION AND SIMULATION OF

THE FOUR STORM ELEMENTS
STORM OCCURRENCE

Storm Occurrence Characterization
Prior to characterizing storm occurrence and the other

three storm elements, storms must be identified and sepa-
rated within precipitation data to form the underlying
database for further characterization of other storm elements.
Several methods exist to identify storms (Bonta and Rao,
1988a); however, often a minimum dry period is used. In a
precipitation record, bursts of precipitation are separated by
periods of no precipitation (fig. 1a), or “dry−period dura-
tions” (Di). Intuitively, at the extremes for a given location,
dry−period durations of the order of minutes between bursts
of precipitation (Bi) would belong in the same storm as the
bursts. However, bursts of precipitation separated by dry−pe-
riod durations of the order of days would not belong in the
same storm. Consequently, there is a “minimum dry−period
duration” (MDPD) that separates bursts of precipitation. For
example, figure 1a shows that continuous precipitation bursts
B1 and B2 are separated by dry−period duration D1, bursts B2
and B3 are separated by D2, and B3 and B4 are separated by
D3. A dry period greater than MDPD separates groups of
bursts of precipitation and short dry periods from one another,
and the Di greater than MDPD are termed “times between
storms” (TBS). Dry periods less than MDPD are included in
“storms.” In figure 1a, D3 < D1 < MDPD < D2, and two storms
are apparent. Often a constant, arbitrary MDPD value is used
to separate storms (e.g., 6 h by Huff, 1967). However, Bonta
(2001) showed that MDPD can depend on the time of year,
and that median monthly MDPD ranged from 16.5 to 26.9 h
over the plains area of Colorado and adjoining states in the
U.S., encompassing an area of 225,000 km2.

Restrepo and Eagleson (1982) developed the exponential
method of computing the MDPD to identify storms in a
precipitation record that is used in the storm model. Their
iterative method assumes that the MDPD is found when Di
greater than MDPD form an exponential distribution:

Figure 1. Schematic of (a) approach used to identify and separate storms
and (b) simulation of storm occurrence, duration, depth, and within−
storm intensities by StormGen.

       ( ) ( ) ( )MDPDTBS1TBSF ATBS/TBS ≥−= −
ii

ie  (1)

where
F(TBSi) = cumulative distribution function (fraction

greater than)
TBSi = individual value of TBS (time units)
ATBS = average time between storms (time units).
The exponential frequency distribution has the property

that the mean and standard deviation are equal, i.e., the
coefficient of variation (CV) is unity, and consequently it is
a one−parameter model (the mean, ATBS). The iterative
process begins with computing CV for all dry periods for a
given month collapsed across years. If CV is greater than
unity, then the shortest duration is eliminated from the data
set and CV is recomputed with the remaining data. The
process is repeated until CV < = 1. The interpolated TBS
duration at CV = 1 becomes the MDPD. Seasonal variation
and changes in climate throughout a year are characterized
by developing monthly frequency distributions.

Monthly TBS are associated with the beginning month of
the dry period, and can extend into one or more succeeding
months. This allows dry periods lasting longer than one
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Figure 2. Empirical monthly exponential frequency distributions of TBS
for RG100 at Coshocton, Ohio.

month, and allows a smooth transition in frequency distribu-
tions from month to month.

The significance of the exponential distribution of TBS is
that interarrival times of “events” in a Poisson process follow
this distribution, making the events (storms) statistically
independent and simplifying simulation. However, storms
have a duration associated with them, whereas the Poisson
process assumes events to be instantaneous without duration.
This assumption eliminates the need to condition storm
occurrence on the occurrence of previous storms, simplifying
storm modeling. Restrepo and Eagleson (1982) suggested
that the Poisson−process analog is appropriate if the ratio of
mean storm duration to the average TBS is much smaller than
unity. They found that the exponential method generally gave
storm durations ranging from 0.06 to 0.29 of ATBS (mean
interarrival  time), with a median of about 0.14 and with 70%
of the values less than 0.19. Worldwide data were used and
ranged from very dry (Saudi Arabia) to very wet (Colombia)
climates. Examples of the good fit of the exponential method
to TBS data are shown in Bonta (2001, 2003) in an area for
which average annual precipitation is about 420 mm.

The exponential method is used to characterize and
simulate storms in the StormGen model. Monthly character-
ization of the model requires 12 sets of 2 parameters (ATBS
and MDPD on a monthly basis). Parameters ATBS and
MDPD account for storm characteristics occurring during
different times of the year, climates, and locations. StormGen
can provide long−term simulations of a partial year (e.g.,
only the April through October period for each year of

simulation),  reducing parameter requirements and allowing
flexibility for specific investigations.

For RG100, MDPD ranges from 330 min in October to
799 min in May (table 1). The corresponding exponential
trends in the TBS data are presented in figure 2 (TBS data that
fit an exponential distribution have a linear trend on a
semilog grid). August has the longest average dry times
between storms (ATBS = 5835 min), and April has the
shortest dry times (ATBS = 3946 min). The Poisson
assumption is validated for RG100 by observing that the ratio
of the average duration to ATBS is much less than unity for
all months (ranging from 0.074 to 0.176 in table 1, with an
average of 0.107). The StormGen model has the capability to
use empirical distributions, fitted exponential distributions,
and parameter estimates from relations between ATBS and
MDPD and average monthly precipitation (e.g., Bonta,
2003).

Storm Occurrence Simulation
Modeling of storm occurrence begins with sampling a

TBS from the exponential frequency distribution of TBS for
the current month since the end of the last storm (TBS1 in
fig. 1b). The “current” month at the beginning of simulation
starts at the beginning of the month of interest specified in the
input file of StormGen. A simulated TBS defines the
beginning of a new storm in terms of the month, day, year, and
4−digit hour−minute of the day. The model can simulate
varying time resolutions, including each minute, rounding to
the nearest equal time increment (e.g., nearest 5 min, etc.),
hourly, and daily. Simulation is advanced by sampling
alternately between storm duration (Duri explained in the
next section) and TBS distributions (fig. 1b; TBS1, Dur1,
TBS2, Dur2, etc.).

STORM DURATION
Storm Duration Characterization

Monthly storm−duration frequency distributions are
formed using the database of storms identified with MDPD
(e.g., fig. 3). Measured monthly storm durations for RG100
at Coshocton range from 299 min (July) to 753 min (May)
(table 1). The importance of quantifying the effect of time of
year (i.e., month) is apparent by observing the wide
differences in horizontal positions of the distributions in
figure 3.

Bonta and Rao (1992), Rao and Chenchayya (1974), and
Grace and Eagleson (1966) found that the Weibull distribu−
tion fit storm−duration data well. StormGen has the capabili-
ty to accept monthly Weibull and other distribution parame−

Table 1. Measured rainfall characteristics at Coshocton, Ohio, for RG100.

Month

Minimum
Dry Period
Duration,

MDPD (min)

Average
Time Between

Storms,
ATBS (min)

Ratio of
Average Storm

Duration
to ATBS

Storm
Duration

(min)

Average
Measured

Storm Depth
(mm)

Average
Monthly

Total Rainfall
(Storms, mm)

Average Monthly
Total Rainfall

for NAEW
(Rain gauge, mm)

Ratio of
Storm Total
to NAEW

Total

April 660 3946 0.159 627 10.4 86.0 86.2 1.00
May 799 4286 0.176 753 12.3 102.1 97.0 1.05
June 489 4259 0.097 414 12.3 107.7 102.6 1.05
July 392 3967 0.075 299 12.0 115.8 108.7 1.07

August 638 5835 0.074 434 12.9 83.6 80.2 1.04
September 448 4809 0.078 373 10.7 77.1 70.6 1.09

October 330 4651 0.088 410 8.1 58.0 56.6 1.02

Average 0.107 1.05
Total 630.3 601.9 1.05
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Figure 3. Monthly storm−duration frequency distributions for RG100 at Coshocton, Ohio.

ters, as well as to use empirical storm−duration distributions.
The model also has the capability to simulate with varying
time resolutions, including each minute, equal increment
(e.g., every 5 min), hourly, and daily. Methods for improving
characterization and for simplifying parameter estimation of
these distributions in ungauged areas are currently being in-
vestigated.

Storm Duration Simulation
Storm duration (Duri) is simulated after synthesis of a

TBS. The method proposed by Bonta (1997) is to sample the
frequency distribution of storm durations for the current
month (fig. 3). The month associated with storm duration is
the month in which the beginning of the storm occurs, and
storms can span months. Simulation time is advanced by
storm duration since the time of the previous TBS, and is
expressed in terms of the month, day, year, and 4−digit
hour−min of the end of the storm. TBS and storm−duration
distributions are alternately sampled to advance simulation
time as described previously (fig. 1b; Dur1, TBS2, Dur2, ...,
TBSn, Durn). Storms are statistically independent because of
the Poisson−process assumption.

STORM DEPTH

Storm Depth Characterization
Monthly storm−depth frequency distributions are formed

using the database of storms identified with MDPD. It is
apparent that there is a statistically significant correlation
between storm depths and durations, although there is wide
scatter (points in fig. 4a; rank correlation coefficient = 0.57
at <0.0001 significance probability). Therefore, conditional
distributions of storm depths must be developed for stochas-
tic simulation that are dependent on storm duration. For
example, it is highly unlikely there will be a large storm
precipitation for a storm of short duration. There are at least
three methods of characterizing conditional relations using
data grouped by month: (1) regression of storm depths on
durations, (2) determining regions of statistical indepen-
dence between storm depth and duration, and (3) equal−dura-
tion−quantile characterization of storm duration and depths.

The first approach uses an equation (power equation in
log−log linear form) to remove the positive correlation
between storm depths and durations (slope = power = 0.655
in fig. 4a). The equation is forced through the point that
describes the time and depth resolution of the data (1 min and
0.01 in. = 0.25 mm for Coshocton data; fig. 4a). Stochastic
storm−depth simulation uses the regression equation and
samples from the frequency distribution of residuals. Howev-
er, the standard deviation of residuals varies with storm
duration, with small values of standard deviation at small and
large durations (fig. 4a). Furthermore, storm−depth distribu-
tions are truncated at the depth resolution of the data, leading
to bounded distributions.

The regression approach was used by Grace and Eagleson
(1966) and Rao and Chenchayya (1974), where a linear
equation was used instead of a power equation. A reason for
the difference in equation form may be the use of differing
methods of developing an MDPD. The exponential method
of identifying storms is used in the present study compared
with the rank−correlation method used in the two cited
references that yield shorter MDPD values (Bonta and Rao,
1988a).

A second approach is to identify regions of independent
depth−duration points, and this method is used in the
StormGen model. Frequency distributions of depth are found
by iteratively finding adjacent independent regions of storm
depths and durations on a plot of storm depth versus duration
(fig. 4a). Starting at the smallest storm duration, the rank
correlation coefficient is computed for a minimum set of
depth−duration points and tested for statistical significance.
If the correlation is significant, then the upper bound of the
current region is set to the maximum duration of the set of
points. If not, then the next larger depth−duration pair is
added and a rank correlation is recomputed and tested for
significance.  This procedure is repeated until all points are
included in independent regions. For example, figure 4a
shows that ten independent depth−duration regions charac-
terize the RG100 data for July. The ten corresponding
empirical frequency distributions of storm depths between
the duration bounds are developed by collapsing depth data
within each duration region (fig. 4b). These empirical
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Figure 4. July storm precipitation for RG100 at Coshocton, Ohio: (a) correlation between storm depth and duration and regions of independence, and
(b) conditional storm−depth distributions for duration regions above.

distributions are truncated at the depth resolution of the data
(e.g., 0. 25 mm). This method of characterizing conditional
storm depths does not yield unique independent duration re-
gions because the procedure depends on the starting dura-
tion−depth pair.

The independent−region approach worked well for a study
in which the magnitudes and frequencies of occurrence of
peak runoff rates were determined (Bonta and Rao, 1992).
Storms for a particular month, and corresponding empirical
frequency distributions of depths, were developed for
assigned storm−duration regions. The duration and depth
distributions were stochastically sampled for watershed
model inputs.

The third method varies the independent−region method
by assigning storm−depth values to lie between fixed

quantiles of storm duration. This removes the problem of
nonuniqueness of independent regions. However, it also
allows possible collapsing of data from different underlying
depth distributions, resulting in statistically significant
correlations within quantile regions. Practical parameteriza-
tion would include relations between quantiles boundaries
and other climatic data, and is an area for further research.

The Weibull distribution has been used successfully by
Bonta and Rao (1992) to describe the frequency distributions
of storm depths. StormGen can use empirical conditional
depth distributions (fig. 4b), parameters for fitted Weibull
distributions, and parameters for other distributions. The
depth−duration input file to the current version of the model
will accept either equal or unequal−quantile characteriza-
tions (methods 2 and 3).
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Storm Depth Simulation
The approach used for simulating storm depths is to treat

storm depth as dependent on storm duration using the
independent−region method above (figs. 4a and 4b). For a
given month, storm duration is sampled from the appropriate
monthly distribution of duration (fig. 3). With this duration
value, the appropriate duration region is determined (fig. 4a),
and the corresponding depth distribution is sampled. For
example, if storm duration of 10 min was simulated for July,
then the depth distribution in region 2 would be sampled
(fig. 4a and 4b). In figure 1b, precipitation depths of Dep1 for
the first storm and Dep2 for second one would be stochastical-
ly simulated. StormGen allows the resolution of simulated
depths to be assigned (e.g., 0.25 mm, 2.5 mm). The model can
simulate TBS, duration, and depth without synthesizing the
within−storm intensities described next. This option is used
in the preliminary performance evaluation of the model.

WITHIN−STORM INTENSITIES
Storm Intensity Characterization

Within−storm intensities are stochastically modeled for
each storm total duration synthesized above. There are an
infinite number of variations of storm intensities possible in
a storm, and fixed patterns such as design storms are not
suitable.

The natural, random, within−storm variability of intensi-
ties can be summarized by using Huff curves (Huff, 1967).
These curves were first developed by using heavy rain storm
data from rain gauges located in Illinois and are isopleths of
probability of storm intensities. Bonta and Rao (1992)
developed a practical method for using more of the
information contained in these curves for modeling peak
flow rates and their frequencies of occurrence. Bonta (1997)
first suggested the use of Huff curves for stochastic
simulation of storm intensities.

Figure 5. Huff curves for RG100 at Coshocton for May and June: (a) dimensionless mass curves for 182 storms, and (b) dimensionless mass−curve
intersection points from figure 5a, isopleths of probability of dimensionless depths, and schematic of stochastic simulation of within−storm intensities.
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Huff Curves
Bonta (2004) presents detail on the construction of Huff

curves. From the storms identified in the precipitation record
using the monthly MDPD values, storm mass curves are
developed and nondimensionalized (fig. 5a). Order is made
of the apparent disorder in figure 5a following a two−step
process to add probability to the dimensionless mass curves.
For a given vertical line representing a single dimensionless
duration (e.g., dimensionless duration−axis value of 0.2 in
fig. 5a), the intersection of each dimensionless mass curve
with the vertical is interpolated (“interpolated mass−curve
intersection”).  Interpolated mass−curve intersections are
computed for every vertical selected by an analyst (fig. 5b;
the interpolated mass−curve intersections for dimensionless
depths are found at verticals in increments of 0.02 along the
dimensionless−duration axis). Deciles of the cumulative
probability distribution of dimensionless depths at each
vertical are found, and isopleths constructed. For example,
90% of dimensionless mass−curve intersections are less than
0.76 at 20% of elapsed time into storms (fig. 5b). These
isopleths are Huff curves, and they summarize the probabilis-
tic nature of storm intensity in terms of dimensionless
accumulated  depths for dimensionless elapsed storm times.
A 90% probability curve (fig. 5b) may be interpreted as the
precipitation events that occur in less than 90% of the storms
for all durations. The probabilistic information contained in
them can be used for stochastic generation of storm mass
curves.

Factors affecting Huff curve development have been
studied by Bonta and Rao (1987) and Bonta (2004). These
studies have shown that Huff curves are robust with respect
to MDPD and sampling interval of the data (i.e., 3 and 60 min
data), both important features for practical application. Using
available data, Bonta and Rao (1989) also showed the
potential for regionalization of Huff curves. Bonta (2004)
showed that the curves are stable across large distances
(660 km) and cited other studies that suggest these curves can
be regionalized over large areas. Bonta and Shahalam (1998,
2003) presented methods to compare Huff curves for
developing stable sets of curves (i.e., minimum number of
storms required for stability). Because of these supporting
studies, the robustness of these curves, the simple probabilis-
tic representation of precipitation intensities, and the poten-
tial for regionalization, Huff curves are proposed to
stochastically  synthesize within−storm intensities.

Storm Intensity Simulation
Dimensionless storm mass curves shown in figure 5b

(Huff curves) from the data−derived dimensionless storm
mass curves in figure 5a suggest a reverse procedure to
stochastically  generate storm mass curves. At a vertical
selected near the beginning of a dimensionless storm
(e.g., vertical at 0.20), the empirical cumulative distribution
of dimensionless storm depths is sampled (e.g., point A =
0.25 in fig. 5b). At the next selected dimensionless storm
duration (e.g., vertical at 0.40), the corresponding empirical
frequency distribution of dimensionless depth is sampled
(e.g., point B = 0.68). The vertical for any selected
dimensionless duration can be doubly interpolated such as at
0.631 (fig. 5b). The first interpolation is between verticals for
which the distributions of dimensionless mass−curve depth
intersections have been developed (e.g., distributions of
dimensionless depths between duration increments of 0.62

and 0.64; fig. 5b). The second interpolation is along the
interpolated vertical for the random dimensionless depth
(e.g., point C = 0.725 on the interpolated vertical at 0.631).
The procedure is repeated until the dimensionless mass curve
reaches the coordinates (1.0, 1.0). The intensity distributions
within storms (e.g., storms described by Dur1−Dep1 and
Dur2−Dep2 in fig. 1b) are synthesized by using this method.

Because a dimensionless depth must always remain the
same or increase as a mass curve is formed, a simulated
dimensionless depth must be greater than or equal to the
previous depth. It can be equal because the exponential
method of identifying storms includes dry periods less than
MDPD (e.g., D1 and D3 in fig. 1a). While simulating using
Huff curves incorporates serial correlation, initial testing
suggests that Huff curves require additional information on
serial correlation, and this is the subject of current research.
Methodologies utilizing Huff curves that are being investi-
gated include simultaneous simulation of time and depths for
within−storm intensities, weighted averaging for adjacent
depths, and rank correlation between adjacent depths that
represent correlated intensities.

The result of the above procedure is a mass curve in
dimensionless form. However, depth and time units are
desired for practical applications. The procedure to assign
units for a mass curve is to multiply each mass−curve point
by the stochastically generated depth−duration pair as
described above. The number of points comprising a mass
curve is dependent on the time and depth resolution requested
by the user. For example, storm−duration points cannot be
modeled finer than a 5 min resolution, and storm depths
cannot be less then 0.25 mm if these resolutions are initially
specified. Bonta and Rao (1992) used this method of
determining units for isopleths to estimate peak−flow rates
and their return periods. Huff curves in StormGen can be
empirical distributions for each vertical, fitted distributions
for each vertical, or equations for individual curves (Bonta
and Rao, 1988b, 1992).

INITIAL TESTING OF STORMGEN
ANALYSIS

The StormGen model was evaluated by comparing
measured and simulated frequency distributions for TBS,
storm depth, and storm duration. Furthermore, precipitation
totals for each month and for the period of simulation
(200 years) were compared with corresponding measured
values. These comparisons allow the determination of the
proper functioning of the model, they can highlight areas for
improvement in model characterization and simulation, and
they can document the aggregated performance of all
elements of the model (long−term total precipitation).
Frequency distributions of simulated TBS, storm durations,
and storm depths were compared with corresponding mea-
sured frequency distributions using the Kolmogorov−Smir-
nov (KS) test and significance probabilities, and by
comparing mean monthly values, differences between mea-
sured and simulated values, and percent deviations. Mea-
sured monthly storm−precipitation totals were used because
simulated storms can span months, and there is no midnight
simulation at the end of the month when within−storm
intensities are not simulated. Consequently, monthly totals
are approximate because they can span a month. Table 1
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Figure 6. Comparisons of simulated with measured frequency distributions for RG100 at Coshocton, Ohio, for the worst comparison of time between
storms in table 2.

shows that average monthly total precipitation at the NAEW
computed using storm totals is about 1.05 times larger than
average monthly totals computed using a recording rain
gauge for which midnight values are available. Monthly and
period total precipitation data are collapsed across the entire
200−year period of simulation. Graphs of the modeled and
measured frequency distributions with the smallest KS sig-
nificance probability (“worst” simulations) were superim-
posed.

COMPARISON OF FREQUENCY DISTRIBUTIONS

Storm occurrence distributions are modeled exceptionally
well (fig. 6), with large KS significance probabilities greater
than 0.9459 (table 2; Sept.), not considering October. The
simulated October distribution, while having a large proba-
bility of 0.4489, is not representative of the corresponding
measured distribution because dry periods beyond the end of
October are not recognized. This is because the model only
retains information on dry periods that are followed by a
simulated storm. The simulation period ends in October;
consequently, no storms are simulated after TBS values
extending beyond the end of October, truncating the TBS
distribution at shorter values. Average monthly measured and
simulated TBS values agree well (table 2). Percent monthly
deviations ranged from −3.2% to +3.0%, excluding October,

with an average of +0.4%. The good simulation of TBS is
partly attributed to the characterization of dry times between
storms that spans months and makes StormGen a useful tool
for drought studies.

Storm duration is also modeled well (table 2), with KS
probabilities greater than 0.5412 (April). April had the lowest
KS significance probability; however, the average measured
and simulated storm durations are nearly identical (627 min
vs. 617 min, respectively; fig. 7). Percent monthly deviations
ranged from −6.2% to +1.6%, with most months between
−2.7% and +1.6% (average of −1.4%).

Average storm depths are least well simulated of the three
storm elements modeled (table 3); however, the actual
differences are small. KS probabilities for comparisons of
frequency distributions ranged from 0.1262 in July to 0.9492
in June. Figure 7 (July) shows the typical trend found of
oversimulation of depths for smaller storms and undersi-
mulation for larger storms. Generally, an average monthly
storm depth for simulated storms was less than for measured
storms (table 3). The deviations between average measured
and simulated monthly storm depth ranged from about 0 mm
(April) to a −2.2 mm undersimulation (August). The
corresponding percent deviations were 0.1 % and −17.1%.
The larger percent deviations are due in part to the small
actual deviation as a fraction of a relatively small number.

Table 2. Comparison between measured (Coshocton, Ohio) and simulated times between storms and storm durations.
Time Between Storms (min) Storm Duration (min)

Month
Average

Measured
Average

Simulated

Percent
Deviation
(Sim−Avg)

KS
Significance
Probability

Average
Measured

Average
Simulated

Percent
Deviation
(Sim−Avg)

KS
Significance
Probability

April 3946 4021 1.9 1.0000 627 617 −1.6 0.5412
May 4286 4414 3.0 0.9880 753 706 −6.2 0.9182
June 4259 4190 −1.6 0.9970 414 419 1.3 1.0000
July 3967 3952 −0.4 1.0000 299 298 −0.3 0.7084

August 5835 5986 2.6 0.9998 434 422 −2.7 0.9995
September 4809 4655 −3.2 0.9459 373 366 −1.7 0.9978

October 4651 4111[a] −11.6 0.4489 410 417 1.6 0.9869

Average 0.4[b] −1.4
[a] Nonrepresentative TBS, percent deviation, and KS probabilities because simulated dry periods extending beyond the end of October are not ac-

counted for.
[b] Average does not include October.
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Figure 7. Comparisons of simulated with measured frequency distributions for RG100 at Coshocton, Ohio, for worst comparisons in tables 2 and 3
for storm durations and depths.

Table 3. Comparison of measured (Coshocton, Ohio)
and simulated monthly storm depths.

Month

Average
Measured

(mm)

Average
Simulated

(mm)

Difference
(Sim−Avg)

(mm)

Percent
Deviation
(Sim−Avg)

KS
Significance
Probability

April 10.4 10.4 0.0[a] 0.1[a] 0.2783
May 12.3 11.4 −0.9 −7.3 0.8200
June 12.3 11.4 −0.9 −7.4 0.9492
July 12.0 10.2 −1.8 −15.0 0.1262

August 12.9 10.7 −2.2 −17.1 0.3004
September 10.7 9.8 −0.8 −7.8 0.8172

October 8.1 7.3 −0.8 −10.2 0.7759

Average −1.1 −9.2
[a] Round−off error explains the 0.1% deviation compared with the 0.0

mm deviation.

The larger disparity between measured and simulated storm
depths compared with TBS and durations is attributed to
three factors: (1) storm depths may be sensitive to storm−
duration simulation (conditionally simulated as in fig. 4);
(2) the independent−region method for characterizing storm
depths may not be adequate for storm simulation, and other
methods require investigation; and (3) the method of inter-
polation between adjacent independent depth distributions
requires improvement. The last two factors are more likely
to cause the deviations than the first factor because duration
distributions are well simulated (table 2; fig. 7).

MONTHLY AND PERIOD TOTALS

Deviations between monthly total precipitation values
were small, ranging from −2.2 to 0.0 mm (−17.1% to 0.1%,
respectively; table 4). The average deviation for all months
was −1.1 mm, corresponding to −9.2% deviation. Average
period simulated total precipitation (April through October)
was only +3.5 mm greater than measured storm totals. This
corresponds to a 0.6% error in total precipitation for the
200−year simulation.

Table 4. Comparison of measured (Coshocton, Ohio) and
simulated monthly and period total precipitation.

Month

Average
Measured

(mm)

Average
Simulated

(mm)

Difference
(Sim−Avg)

(mm)

Percent
Deviation
(Sim−Avg)

April 86.0 96.7 10.8 12.6
May 102.1 98.8 −3.3 −3.3
June 107.7 107.6 −0.1 −0.1
July 115.8 105.9 −10.0 −8.6

August 83.6 78.5 −5.1 −6.1
September 77.1 82.1 5.1 6.6

October 58.0 64.2 6.2 10.6

Average 0.5 1.7

Total Period 630.3 633.9 3.5 0.6
Values (April−Oct.)

DISCUSSION
The model results are generally favorable and promising

in terms of simulated monthly TBS and storm depth and
duration distributions, and in terms of monthly and period
total precipitation depths. Storm depths were least well
modeled, which is attributed principally to the method of
interpolating between storm−depth distributions for a given
month, and to the method of characterizing conditional storm
depth distributions given storm duration. Larger average
storm depth percent deviations have actual storm depth
deviations of only −1.1 mm. Storm depths tend to be
oversimulated at smaller depths and undersimulated at larger
depths. The method of evaluation highlights the weaknesses
in the depth element of the model.

With development and robustness of characterization
methods documented in the literature, the StormGen model
appears to be promising for practical application. However,
further testing of each storm element in different climates and
a comparison of simulated and measured results using
independent rain data are required.
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STORMGEN MODEL INPUTS AND OUTPUTS (VERSION
2004.01)

The current version of the storm generator incorporates
several features that allow expression of different forms of
input and different outputs. Inputs include monthly MDPD
estimates, frequency distributions of storm depths and dura-
tions, and Huff curves. The MDPD can be provided using as-
signed values and by using regression relationships between
TBS and MDPD and monthly precipitation (Bonta, 2003).
TBS and storm depth and duration frequency distributions
can use empirical data directly or use parameters for a variety
of fitted distributions. Output options are daily totals, 24 h to-
tals at a user−specified time of day, or user−specified constant
time intervals (e.g., 5 min, hourly, etc.). Furthermore, outputs
can be only storm occurrences, durations, and depths (no
within−storm intensities as in the present study). The general
output is a month, day, year (starting at year 0), time of day
to the minute, and accumulated precipitation. Special output
formats are available for specific watershed models.

RESEARCH NEEDS

The current version of StormGen described in this article
simulates precipitation at a point, and further research is
needed to incorporate coherent spatially distributed storm
precipitation.  Further research is also needed to include
persistence of droughts and wet periods, to simulate snowfall,
to associate model parameters with outputs from global
circulation models, and to improve the storm−depth charac-
terization and simulation. The model can be modified to
include these weather factors by developing conditional
distributions (e.g., analyze observed TBS values within
lagged classes of the Southern Oscillation Index that
forecasts persistence in TBS). Comprehensive application
and testing of StormGen for different simulated elements in
other climates is the subject of other articles. Coupling the
storm generator with a weather generator (e.g., GEM) would
enable the storm generator to obtain information from the air
temperature component to simulate snowfall. More research
is needed to develop general characterization schemes for
developing the distributions needed to model ungauged
areas. Use of the storm model with watershed models is also
a research need.

CONCLUSIONS
The concepts for modeling and characterizing point storm

precipitation as incorporated into the StormGen storm−simu-
lation model are presented (four elements of storm occur-
rence, storm durations and depths, and within−storm
intensities).  The model avoids the common assumption of
daily or 24 h total precipitation and synthesizes storms
directly (including several storms per day to several days per
storm). The removal of the 24 h constraint eliminates the
need to artificially synthesize within−storm intensities by
using design storms or other patterns with limited flexibility
and nonrepresentativeness. The storm generator synthesizes
the month, day, year, hour, and minute of the beginning and
end of individual storms (storm occurrence and duration),
storm depth, and the within−storm intensities to the nearest
time resolution (e.g., 1 min, 5 min, 24 h, etc.) and depth
resolution specified (e.g., 0.25 mm, 2.5 mm, etc.). Character-
ization and simulation of the four storm elements is

illustrated by using 61 years of rain gauge data from
Coshocton, Ohio. Characterization studies and model devel-
opment have occurred simultaneously to maximize the
practicality  of the model in ungauged areas. An initial
performance evaluation of the storm generator was con-
ducted for a period of 200 simulated years. The following
conclusions can be made from this study:

� Dry times between storms (TBS) are characterized well
by the exponential method of separating storms, yield-
ing the minimum dry period duration (MDPD) and the
exponential distribution of times between storms.
MDPD is successfully used to identify storms to form
a database for subsequent characterization.

� Storm duration is characterized well by monthly fre-
quency distributions of storm duration formed by using
MDPD to identify storms.

� Conditional simulation of storm depths on storm dura-
tion is required to account for the statistically signifi-
cant correlation between these two storm elements.

� Determination of regions of independent storm dura-
tions and depths is adequate for characterizing and sim-
ulating storm depths, but improvement in
characterizing  the dependence of storm depth on storm
duration is warranted.

� A power equation for storm depths (Dep) and storm
duration (Dur) characterizes the correlation between
these two variables for the range of small to large storm
depths (Dep = aDurb), unlike in other studies in which
a linear equation was used (Dep = c + dDur).

� Monthly characterization of short−time increment pre-
cipitation data incorporates observed wide time−of−
year variability of distributions into the storm
simulation model.

� The Poisson−process assumption that characterizes
statistically  independent storm events is validated us-
ing Coshocton data: average storm duration was on av-
erage only 0.107 of average TBS (ranging from 0.074
to 0.176).

� Successful simulations of the frequency distributions
of the three storm elements were obtained in the fol-
lowing order (starting with the best simulation): TBS,
storm durations, and storm depths. Overall, the model
performed well.

� Percent deviations between the simulated and mea-
sured distributions of the three storm elements are: For
monthly TBS distributions: average of 0.4%, with a
minimum and maximum of −3.2% and 3.0%, respec-
tively (excluding October). For monthly duration dis-
tributions: average of −1.4%, with a minimum and
maximum of −6.2% and 1.6%, respectively. For
monthly depth distributions: average of −9.2%, with a
minimum and maximum of −17.1% and +0.1%, re-
spectively. Corresponding absolute monthly depth
deviations ranged from −2.2 mm to 0 mm.

� Deviations between the simulated and measured total
monthly and period precipitation are: For monthly to-
tals: average of +1.7%, with a minimum and maximum
of −8.6 and +12.6%, respectively. Corresponding
depths range from −10.0 mm to 10.8 mm, with an aver-
age of +0.5 mm. For period totals: +0.6%, correspond-
ing to +0.5 mm.

The storm−simulation model can be used for a variety of
purposes (especially if coupled with a weather−generator
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model such as GEM) including risk analysis for studies of the
spread of crop and animal pests and diseases, erosion and wa-
ter−quality modeling, wind erosion, drought, groundwater
recharge, climate change, soil−moisture depletion, evapora-
tion and drainage between storms, leaf wetness, and natural
resource applications. Furthermore, the storm generator can
aid in other studies such as intensity−duration−frequency
analysis, flood analysis forecasting, heating and air condi-
tioning engineering, erosivity estimates, international agri-
cultural trade, and engineering design. A major advantage of
the storm generator is its ability to generate long records of
storms in areas where there are few or no data. The results of
this study are encouraging, and further research should help
achieve the potential uses of the model.
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