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COST−EFFECTIVE BMP PLACEMENT:
OPTIMIZATION VERSUS TARGETING

T. L. Veith,  M. L. Wolfe,  C. D. Heatwole

ABSTRACT. Cost−effectiveness of nonpoint−source pollution reduction programs in an agricultural watershed depends on the
selection and placement of control measures within the watershed. Locations for best management practices (BMPs) are com-
monly identified through targeting strategies that define locations for BMP implementation based on specific criteria uni-
formly applied across the watershed. The goal of this research was to determine if cost−effectiveness of BMP scenarios could
be improved through optimization rather than targeting. The optimization procedure uses a genetic algorithm (GA) to search
for the combination of site−specific practices that meets pollution reduction requirements, and then continues searching for
the BMP combination that minimizes cost. Population size, replacement level, crossover, and mutation parameters for the
GA were varied to determine the most efficient combination of values. A baseline scenario, a targeting strategy, and three
optimization plans were applied to a 1014 ha agricultural watershed in Virginia. All three optimization plans identified BMP
placement scenarios having lower cost than the targeting strategy solution for equivalent sediment reduction. The targeting
strategy reduced average annual sediment loss compared to the baseline at a cost of $42 per kg sediment reduction/ha. The
optimization plan with the same BMP choices achieved the same sediment reduction at a cost of $36 per kg/ha. Allocation
of BMPs varied among optimization solutions, a possibility not available to the targeting strategy. In particular, the optimiza-
tion solutions placed BMPs on several stream−edge fields that did not receive BMPs in the targeting strategy.

Keywords. Genetic algorithm, Geographic information system, Nonpoint−source pollution, Sediment delivery, Spatial
optimization, Spatial placement, Watershed management.

educing agricultural nonpoint−source (NPS)
pollution through implementation of best manage-
ment practices (BMPs) has received growing em-
phasis due to government regulations such as the

Clean Water Act. As effective measures for controlling NPS
pollution are identified, there is a tendency to want to control
NPS pollution to the greatest extent possible by fully estab-
lishing those measures across the landscape. However, land
use, soils, and topography cause some locations to be more
critical than others as source areas of NPS pollution. Interac-
tion of BMPs can further impact the amount and types of NPS
pollutants transported to the watershed outlet. Because of
site−specific effectiveness of BMPs, costs of NPS reduction
can be reduced by selectively choosing and placing BMPs. To
enable cost−effective selection and placement of BMPs, al-
ternative BMP scenarios must be compared with respect to
cost and NPS pollution control.

Field studies are limited in their practicality for comparing
alternative BMP scenarios. Establishing BMPs and deter-
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mining their long−term effectiveness takes several years, at
a minimum, and results are specific to characteristics of that
site and BMP application. Also, site−specific characteristics
and temporal variability do not lend themselves to paired or
replicate studies in which watershed response to alternate
BMPs can be evaluated across otherwise similar conditions.
As a result, comparative evaluation of NPS control through
selective BMP application is more feasibly accomplished
through plan− or performance−based methods.

Plan−based methods draw from past field studies and
scientific theory to assign expected levels of control to
BMPs. The ability of a plan−based method to distinguish the
impact of a specific BMP/site combination is limited by the
current level of understanding of the impact of that
combination.  Performance−based methods use simulation
models to assess changes in watershed response due to
alternative BMP applications. Simulation modeling can
incorporate scientific knowledge to quantify general as well
as site− and BMP−specific changes in response.

Targeting is a plan−based method that focuses pollution
control towards critical areas that are anticipated to contrib-
ute most heavily to NPS pollution. Criteria are specified a
priori based on current understanding of BMP effectiveness
in a given situation. Targeting is often based on physical
characteristics  or cropping practices, focusing on variables/
factors such as slope, soil type, proximity to stream, crop, and
tillage practices.

Past studies describe a variety of targeting strategies.
Heatwole et al. (1987) placed BMPs based on both physical
and management characteristics, including hydrologic soil
group, proximity to stream, and cattle density. A targeting
strategy by Dickinson et al. (1990) selected areas exceeding
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a given soil loss tolerance level. Willis et al. (1994) used
baseline phosphorus (P) levels, hydraulic and water budget
models, and various field experiments to determine P load
reduction effectiveness of several categories of BMPs. They
also calculated BMP implementation and maintenance costs.
Cost and load reduction factors were combined for each BMP
to estimate individual cost−effectiveness values. Then BMPs
were combined by successively adding BMPs in the order of
predetermined cost−effectiveness until the desired level of P
load reduction was achieved.

As implications of targeting criteria become better known,
criteria can be made increasingly selective or variable
(e.g., as a function of distance to stream). However, targeting
still involves rules applied consistently across the watershed
and site−independent estimates of BMP effectiveness. As
such, targeting is independent of local spatial characteristics
that may require more or less control. Also, spatial interac-
tions among BMPs, which may affect both cost and pollution
reduction, are not typically considered in establishing a
targeting strategy. As a result, the single BMP scenario
developed for the watershed based on a set of targeting
criteria may or may not be the most cost−effective scenario.

In contrast to targeting, optimization is a performance−
based method. Optimization procedures enable consider-
ation of spatial variation across multiple variables and,
through evaluation of numerous scenarios, incorporate the
impacts of BMP interaction and site−dependent characteris-
tics in the assessment of scenario effectiveness. Thus, an
optimization procedure provides a way of meeting the same
water quality goals as intended to be met by the targeting
strategy, but may do so in a more cost−effective way. Use of
the genetic algorithm (GA), a large number optimization
heuristic, in combination with an NPS prediction model and
an economic model has been found to improve BMP scenario
cost−effectiveness in agricultural watersheds as compared to
non−selective approaches (Srivastava et al., 2002; Veith,
2002; Veith et al., 2003).

Implementation  of a targeting strategy requires only data
regarding whether or not each field completely meets a set of
targeting criteria. Interpretation and application of the single
resulting solution are simple as compared to an optimization
procedure. An optimization procedure minimally requires
the same data. However, information on the extent to which
each field meets individual criteria may allow more selective
assignment of BMPs to each field. Detailed economic data

are also needed. Additionally, an optimization procedure
requires technical skill in formatting the data for a given
watershed and interpreting the results to effectively under-
stand the alternative solutions provided.

There is a trade−off between the potential benefits of
achieving more selective BMP placement through optimiza-
tion and the decreased data and skill requirements of
targeting. The objectives of this study were: (1) to determine
if selection of BMPs through optimization, a performance−
based method, can identify more cost−effective BMP
scenarios than targeting, a plan−based method; and (2) to
determine if the cost−benefit ratio of optimization is lower
than that of targeting in meeting NPS reduction goals.

CASE STUDY WATERSHED
The comparison of optimization and targeting was

conducted for a 1014 ha watershed in Rockingham County,
Virginia (Veith, 2002). Land use in the watershed is
comprised of agricultural production (77%), forest/orchard
(19%), and farmstead/residential (4%). Agricultural produc-
tion in the watershed includes eleven dairy farms and seven
beef farms. Three of the cattle farms include poultry
production as well. The two major soil classifications in the
watershed are Frederick silt loam (55%) and Laidig very
channery loam (16%). These are deep, well drained soils with
moderate permeability and available water capacity. Addi-
tionally, 11% of watershed has rocky outcrop. The main
channel in the watershed has a flow length of about 6,000 m
and is ephemeral, joining a perennial stream at the wa-
tershed’s outlet.

METHODS
A baseline scenario, one targeting strategy, and three

optimization plans were applied to the watershed (table 1).
The baseline scenario was representative of the watershed
without erosion control practices. The targeting strategy
implemented a combination of basic erosion control BMPs
involving changes in crop management (reduced tillage and
cover cropping) and in−field operation orientation (contour
and up/down slope), based on slope steepness. The three
optimization plans applied the full combination of BMPs
used by the targeting strategy as well as individual BMPs

Table 1. Description of evaluation runs compared in this study.
Baseline Scenario All cropland was managed as conventionally tilled corn silage.

Targeting Strategy All cropland with the majority of the field slope:
Less than or equal to 3% was managed as in the baseline, and
Greater than 3% was converted to minimum−tillage corn silage on the contour with a winter wheat cover crop.

Optimization Plan 1 Two management variations of corn silage were available for all cropland:
Conventional tillage, or
Minimum−tillage on the contour with a winter wheat cover crop.

Optimization Plan 2 Nine management variations were considered for any cropland field:
All combinations (eight total) of:

conventional or minimum tillage,
with or without winter wheat cover crop,
and with or without contour farming; or

Conversion of the row crop to forage (pasture or grass hay).

Optimization Plan 3 This plan was the same as optimization plan 2, except that hay and pasture lands were additionally available for conver-
sion to corn silage with or without BMPs.
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Figure 1. Basic steps of optimization procedure.

within the targeting combination. Cropland management
and, in some cases, pasture and hay land varied across the
evaluation runs, as indicated in table 1.

The optimization procedure developed by Veith et al.
(2003) was used in this study. The optimization procedure is
comprised of three components (optimization, NPS predic-
tion, and economic analysis) within a GA framework (fig. 1).
The optimization procedure was applied to the three
optimization plans to determine BMP scenarios. The impact
of the targeting strategy on sediment yield and cost was also
determined using the NPS and economic components of the
optimization procedure.

SEDIMENT YIELD PREDICTION

The NPS component estimates sediment yield based on
gross erosion calculated with the Universal Soil Loss
Equation (USLE) and a sediment routing routine developed
by Veith (2002). The sediment routing component of the
optimization procedure accounts for downstream effects on
sediment delivery (Veith et al., 2003). The watershed is
divided into cells using a geographic information system
(GIS). A delivery ratio for each cell is calculated and applied
both to gross erosion generated within a cell and to sediment
flowing into a cell. Delivery from each cell is then routed
along the flow path to obtain the net sediment yield of each
cell to the watershed outlet.

Six factors must be quantified for the USLE: rainfall−run-
off (R), soil erodibility (K), slope steepness (S), slope length
(L), cropping−management (C), and support practice (P). An
R value of 2800 MJ�mm/(ha h yr) (Schwab et al., 1993) was
used for the case study watershed. The USLE erodibility
K factor, taken from the SSURGO soil survey (USDA−
NRCS, 2001) and converted to SI units, ranged from 0.0067
to 0.057 Mg ha h/(ha MJ mm) for soils in the watershed. The
S factor was calculated from slope, based on the digital
elevation model (DEM). The L factor was based on a flow
length of 45 m, which is a characteristic length of nonconcen-
trated flow for fields in this region (B. Cubbage, Natural
Resource Technician,  USDA−NRCS, Harrisonburg, Va.,
personal communication, 4 March 2002). The C factors were
obtained from USDA−NRCS (1988) and B. Cubbage (Natu-
ral Resource Technician, USDA−NRCS, Harrisonburg, Va.,

personal communication, 4 March 2002). A P factor of one
was used for all fields.

Separate sediment delivery equations are used in the
optimization procedure for overland flow and for two types
of channel flow: shallow concentrated flow, and ephemeral
or perennial stream flow. Sediment delivery through over-
land flow cells is modeled as a function of land use cover,
slope steepness, and flow length:
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d  (1)

where
d = sediment delivery ratio through an overland cell
� = land use coefficient (dimensionless)
s = slope steepness across cell (m/m)
f = length of flow path across cell (m).
Development of equation 1 is described in detail by Veith

et al. (2003). The slope steepness and length of flow path
across each overland cell are determined by a GIS. Veith
(2002) determined values of the empirical coefficient (�)
based on calculations with the field−scale NPS model,
RUSLE2 (available at: http://bioengr.ag.utk.edu/rusle2/.
Accessed 4 March 2002).

Higher delivery is expected in channel versus overland
flow due to increased flow depth, velocity, and transport
capacity. Channel cells can be identified from a DEM in
terms of the number of upstream cells accumulating to create
a channel cell. In the Ridge and Valley physiographic region
of Virginia, where the case watershed is located, shallow
concentrated flow was identified as flow accumulated from
at least 60 cells but less than 200 cells using a 30 m DEM, and
channel flow was defined as flow accumulated from at least
200 cells (Veith, 2002). The entire cell containing a stream is
assigned the relevant stream delivery value; overland
sediment moving to the channel is not treated separately for
cells containing streams. Delivery ratios of 0.98 and 0.9998
were assigned for shallow concentrated flow and stream flow
cells, respectively. These ratios were selected to represent the
low level of deposition expected in small headwater, rural
watersheds (T. A. Dillaha, Department of Biological Systems
Engineering,  Virginia Tech, Blacksburg, Va., personal com-
munication, 8 March 2002). For different sized watersheds,
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it may be desirable to adjust the cell sizes or to modify the
channel definitions or delivery levels.

The sediment yield contribution of each cell is determined
by routing sediment from the cell through downstream cells
to the outlet. For each cell, the gross erosion is multiplied by
the delivery ratios of cells in the flow path from the cell to the
outlet:

∏= jiii daAY  (2)

where
Yi = sediment loss of cell i reaching the outlet (Mg)
Ai = gross erosion from cell i (Mg/ha)
ai = area of cell i (ha)
dj = sediment delivery ratio of cell j
j indexes all flow path cells between cell i and the outlet.
The ArcView GIS (Ver 3.2., Environmental Systems

Research Institute, Redlands, Cal.) FlowLength function is
used to closely approximate equation 2 by rewriting the
product of the delivery ratios as an additive exponential
function:
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where
dj = sediment delivery ratio of cell j
fj = flow length assigned to cell j
tj = travel distance of flow between cell j and the next cell

in the flow path.
Summing the sediment loss reaching the outlet (i.e., the Yi

values) over all cells and dividing by the watershed area gives
the sediment yield of the watershed in Mg/ha.

ECONOMIC ANALYSIS
The economic component requires a variety of inputs,

which were determined for the case watershed as follows.
Average annual costs for each farmer were calculated from
enterprise production costs, historical selling prices, and soil
productivity. Production costs ($/ha) were determined from
the Virginia Farm Management Crop and Livestock Enter-
prise Budgets (VCE, 1999, 2001). Production costs included
seed, fertilizer, machinery, and labor costs for the enterprise.
Land ownership and tax costs were excluded, as were farm
planning and management costs. These values do not change
with respect to the management practice adopted. Selling
prices were calculated from buying prices (VASS, 2001) by
subtracting a combined cost for marketing and transportation
(D. J. Bosch, Department of Agricultural and Applied
Economics, Virginia Tech, Blacksburg, Va., personal com-
munication,  7 March 2002). The pasture rent was taken from
VCE (2001). Soil productivity values (quantity/ha) were
determined from the NutLite computer program, which is an
interface to NutMan (V2, ISIS Lab, Department of Entomol-
ogy, Virginia Tech, Blacksburg, Va. Available at: www.i-
sis.vt.edu/dss/nutman.  Accessed 18 April 2002; Stone,
1995); the Virginia Nutrient Management Handbook (VA−
DCR, 1993); and J. C. Baker (Department of Crop and Soil
Environmental  Sciences, Virginia Tech, Blacksburg, Va.,
personal communication, 14 March 2002).

Public costs were taken from Carpentier et al. (1998) and
annualized over a period matching the five−year rotation
length of hay set by the enterprise budgets. All other

management  practices were either single−year or five−year
rotations.

OPTIMIZATION
A GA is conceptually based on natural selection tech-

niques seen in biological evolution (Goldberg, 1989; Cham-
bers, 1995; Srivastava et al., 2002). Basic GAs model
individuals of a population as chromosomes, with genes on
each chromosome defining relevant traits of that individual.
The possible values of each gene form a selection set for the
gene. New individuals are created through crossover and
random mutation. Chromosomes judged to be most fit are
most likely to survive into the next generation.

In the optimization procedure by Veith et al. (2003), a
watershed scenario is modeled as a chromosome. Each field
in the watershed is represented as a gene and is associated
with a selection set of possible management practices
specific to that field. At each iteration in the optimization
procedure, a number of scenarios are considered for addition
into the GA population. Each scenario is evaluated by the
NPS and economic components, which calculate watershed−
level pollutant load and cost, respectively. These values are
converted into fitness scores, allowing scenarios to be
compared and the best (most fit) scenarios selected. If two
scenarios both meet the target pollutant load, then the
scenario with the lower implementation cost is the better
(more fit) scenario. The next population is created from the
set of scenarios having the highest degree of fitness, and the
process continues until a pre−established termination criteri-
on is reached.

Population size and reproduction parameters, such as
crossover rate, mutation rate, and replacement level, impact
a GA’s efficiency. Population size refers to the number of
scenarios evaluated at each generation of the GA. At each
generation, new scenarios are created from existing scenarios
through crossover and/or mutation. Crossover refers to
creation of a new scenario by combining information from
two existing scenarios. For example, in this study, crossover
of two scenarios creates a new scenario by combining BMP
placements for some of the fields in the watershed from the
first existing scenario with BMP placements for the remain-
ing fields from the second existing scenario. The mutation
rate is the probability that the value of any gene (management
practice selected for a field) will be randomly changed while
creating a new scenario. The replacement level controls the
fraction of the population that is replaced through crossover
or mutation at each generation.

Initial selection of the most efficient combination of
parameter values for a given problem is often complex.
Mitchell (1999) cautioned that ideal parameter values are
likely to vary for different problem types and applications as
a result of problem formulations and performance criteria.
Use of large number optimization heuristics, such as the GA,
in determining BMP placement cost−effectiveness has only
been reported recently in the literature. In particular, there is
a lack of previous research on the specific one−dimensional
array problem formulation used by the optimization proce-
dure. Hence, the first step in applying the optimization
procedure was to determine efficient operating parameters
for the GA within the context of this problem. Parameters
were developed for the topography, soil, climate, and land
use conditions typical of the case study location. While these
parameters may also be effective for alternate locations with
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similar physiographic and climatic conditions, confirmation
or re−evaluation of parameters may be necessary, particular-
ly in different locations, for further applications of the
optimization procedure.

Population size, crossover rate, and mutation rate typical-
ly interact nonlinearly (Mitchell, 1999). Thus, determining
these parameters in different orders may affect the combina-
tion selected. Population size and replacement level impact
the number of evaluations performed and, thus, computer
runtime. As a result, these two parameters were determined
first for this research. Crossover was determined next.
Crossover is often considered the main method in a GA of
introducing variation and exploring the search space (Mitch-
ell, 1999). In contrast, mutation is viewed primarily as a
method of preventing given genes within each individual
from becoming permanently fixed. As such, crossover
performs a more crucial role than mutation. The mutation
rate, considered the least important parameter in the overall
efficiency of the GA, was determined last.

A large population size enables more of the search space
to be sampled with each generation. However, most wa-
tershed−level simulation models take several minutes or
even several hours for a single evaluation. Because fewer
evaluations per generation are made when using a smaller
population size, a small population size is desirable in
reducing computer runtime to a feasible length. A small
population allows less of the response surface to be evaluated
as compared with a larger population.

Similarly, high replacement levels were desired to maintain
breadth in sampling across the search space. In a GA with a high
replacement level, only the few most fit individuals are carried
over from one population to the next. This ensures that the
best−ever solutions will be maintained but allows most of the
individuals in each population to continue sampling the search
space through crossover and mutation. Like a large population
size, a high replacement level increases the number of
evaluations per generation and thus the computer runtime.

Thus, it was desirable to select a combination of
population size and replacement level that would minimize
computer runtime but still sample the response surface
broadly enough to locate an optimal solution set. To this end,
the impact of population size and replacement on the
convergence of the GA was evaluated for ten combinations
(table 2). Replacement levels were chosen to correspond with
population sizes such that at least three individuals were
carried over to the next generation.

Initial crossover and mutation rates of 0.9 and 0.05,
respectively, were used to determine the population size and
replacement  level. These rates were based on the literature
(De Jong, 1975; Grefenstette, 1986; Schaffer et al., 1989;
Liong et al., 1995; Mulligan and Brown, 1998). The initial
mutation rate, slightly higher than suggested by the literature,
was chosen to add increased diversity in the smaller
populations. A 0.9 crossover rate means that every two
individuals selected from the preceding generation have a 0.9
probability of being combined through crossover. A 0.05
mutation rate means that each gene in each individual has a
0.05 probability of being mutated.

Fitness scores for runs with larger populations showed the
lowest rate of improvement with respect to number of
evaluations (fig. 2). Over an equivalent number of evalua-
tions, the lower population sizes of 10 and 15 increased in
fitness at a higher rate than the remaining combinations. The

Table 2. Tested combinations of population size and replacement level.

Population Replacement LevelPopulation
Size 90% 70% 50%

100 X X
50 X X
25 X X
15 X X
10 X X

population size of 15 with 70% replacement performed better
than all other combinations after an initial period of about
2000 individuals evaluated. The larger population size of 15
with 70% replacement has an advantage over the population
size of 10. Because more individuals in the population size
of 15 are available in each generation for crossover and muta-
tion, more of the search space will be sampled. Thus, the pop-
ulation size of 15 with 70% replacement was selected.
Although this combination of initial conditions is not neces-
sarily ideal for all watersheds, the arguments for a low popu-
lation size and high replacement level still hold.

For the population size of 15 with 70% replacement, three
crossover rates (0.85, 0.90, and 0.95) were compared (fig. 3).
Based on the overall performance, a 0.90 crossover rate was
selected for the remainder of the evaluations. For this
combination,  mutation rates were varied from 0.005 to 0.07
(fig. 4). As expected, the fitness score improved more quickly
as decreasing mutation rates introduced less random fluctua-
tion into each population. However, when the mutation rate
was decreased to 0.005, increase in fitness score fell below
that of all other tested mutation rates, indicating that the
randomness introduced in each generation was not sufficient
to prevent scenarios from focusing on local optima. The 0.01
mutation rate, which showed the most consistent rate of
increase and achieved the highest fitness score, was selected.

The focus of this research was to determine if the
optimization procedure could identify a set of solutions more
cost−effective than a given targeting strategy. Thus, opti-
mization run−length depended more strongly on achieving an
acceptable  cost−effectiveness level within a reasonable
run−length than on achieving a particular degree of conver-
gence. A graph (fig. 5) of the highest scoring scenario of each
generation versus pollution target load, pollution reduction
from baseline, and watershed cost was used to determine how
long a simulation should run before termination. This graph
was easily updated and evaluated throughout the simulation
using a spreadsheet program. Based on information provided
by the graph, the simulation was continued until the pollutant
targeting criterion was met and the incremental decrease in
total watershed cost became negligible.

RESULTS AND DISCUSSION
Applying the targeting strategy to the baseline scenario

reduced watershed sediment yield from 3,450 kg/ha to
640 kg/ha, an 81% reduction. The maximum acceptable
pollutant load for the optimization procedure was then set
equal to the targeting strategy sediment yield (640 kg/ha).
Because optimization was designed to meet the maximum
acceptable  pollutant load, if possible, and then focus on cost
reduction, and because this pollutant goal was always met,
decrease in sediment yield from the baseline for all
evaluations was the same: 2,810 kg/ha (table 3).
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Table 3. Average annual sediment yield and watershed costs
for the targeting strategy and three optimization solutions.

Sediment
Decrease

from Baseline
(kg/ha)

Cost
Increase

from Baseline
($)

Cost
Effectiveness
of Solution
$ / (kg/ha)

Targeting 2810 134,892 48.00
Optimization plan 1 2810 117,426 41.79
Optimization plan 2 2810 89,748 31.94
Optimization plan 3 2810 −6,639 −2.36

Cost increase for all evaluations (table 3) reflected the
decrease in net return realized by the solution scenario as
compared to the baseline scenario. Cropland, which was all
in corn silage, was the only land use considered for BMPs
under the targeting strategy and optimization plans 1 and 2.
As a result, the management practice of highest profit for
each field (conventionally tilled corn silage) was identical
across these three BMP placement strategies. For these three
strategies, the baseline scenario was profit maximizing and
any change in management practice from the baseline
resulted in a decreased net return. Thus, the cost increase
column in table 3 was always positive for these three
strategies.

In optimization plan 3, hay and pasture were allowed to
convert to cropland. The profit maximizing scenario for
optimization plan 3 would have been to place all originally
identified hay, pasture, and cropland into conventionally
tilled corn silage. However, the baseline retained the
originally identified hay and pasture. Thus, for optimization
plan 3, the baseline was not profit maximizing and a change
in management practice could potentially result in increased
net return. This increase in net return is seen in the solution
scenario (table 3) and is indicated by the negative value of
cost increase from the baseline. In this plan, fields in hay or
pasture were allowed to convert and did convert to corn silage
whenever the conversion decreased costs and still met the
pollutant targeting criterion.

Cost−effectiveness of each solution (table 3) was calcu-
lated as increase in total cost divided by sediment reduction.
Cost−effectiveness in the optimization plans improved from

that of the targeting strategy as more management practices
were allowed. For example, under the targeting strategy, it
was estimated to cost $48 for each kg/ha of sediment con-
trolled annually. Optimization plan 1 allowed only the BMP
combinations available to the targeting strategy but used dif-
ferent rules for placing those combinations. As compared to
targeting, optimization plan 1 was estimated to cost about $6
less per kg/ha/yr of sediment controlled. In optimization plan
2, which allowed subsets of the targeting strategy BMP com-
binations, the cost was reduced to $32 per kg/ha/yr of sedi-
ment reduction. Implementing the solution scenario
identified by optimization plan 3 was estimated to cost about
$2 less than the baseline for every kg/ha/yr of watershed−lev-
el sediment loss prevented. The optimization procedure
found more cost−effective BMP combinations than the tar-
geting strategy for all evaluation runs.

SPATIAL ALLOCATION

Allocation of non−fixed management units, as defined in
table 1, varied across the evaluation run solutions (table 4).
Of the 68 fields placed in conventionally tilled corn silage in
the baseline scenario (fig. 6a), only 10 remained in that
practice in the targeting strategy (fig. 6b). The other 58 were
assigned a BMP set of contour, minimum−tillage corn silage
with a winter wheat cover crop.

Optimization plan 1 achieved the same level of pollution
reduction as the targeting strategy, but with approximately
one−third fewer fields put in minimum−tillage corn silage on
the contour with a winter wheat cover crop (table 4). As
compared to the targeting strategy (fig. 6b), plan 1 (fig. 6c)
placed fewer BMPs on fields away from the streams. For
example, all fields that predominantly had a slope greater
than 3% were assigned the minimum−tillage BMP by the
targeting strategy, while in optimization plan 1, primarily
only those high−slope fields that bordered the stream had
BMPs applied. The optimization solutions thus demonstrate
the expected and desired outcome of identifying those fields
near the stream as having a greater impact on sediment
delivery from the watershed. This effect of spatial position in
the watershed is conceptually reasonable and desirable, and
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Table 4. Agricultural BMP allocation for the baseline scenario, targeting strategy, and four
optimization solutions (values are number of fields, with area in hectares in parentheses).

Management Practice[a] Baseline Targeted Plan 1 Plan 2
Plan 3,

Solution 1
Plan 3,

Solution 2

CC 68 (392.0) 10 (34.7) 28 (83.2) 19 (42.5) 24 (78.6) 25 (85.6)
CC / WW −− −− −− −− 2 (0.8) 2 (0.4)
MC −− −− −− 4 (18.6) 5 (15.3) 4 (4.0)
MC / WW −− −− −− 1 (6.6) −− −−
CC (2 yr) / H (3 yr) −− −− −− −− 7 (42.2) 6 (32.5)
CC (1 yr) / MC (1 yr) / H (3 yr) −− −− −− −− 5 (37.2) 3 (5.1)
H 44 (288.2) 44 (288.2) 44 (288.2) 44 (288.2) 3 (51.9) 3 (51.9)
Pasture 13 (94.6) 13 (94.6) 13 (94.6) 13 (94.6) 15 (147.4) 18 (184.0)
CC, contoured −− −− −− 2 (3.3) 28 (145.2) 27 (141.8)
MC, contoured −− −− −− 23 (140.3) 17 (103.6) 19 (114.5)
MC / WW, all contoured −− 58 (357.4) 40 (308.9) 19 (180.8) −− −−
CC (2 yr) / H (3 yr), all contoured −− −− −− −− 10 (112.9) 8 (95.4)
CC (1 yr) / MC (1 yr) / H (3 yr), all contoured −− −− −− −− 9 (39.6) 10 (59.6)
[a] CC = conventional corn silage; WW = winter wheat; MC = minimum till corn silage; H = grass hay.

0.7 0.70 1.4 Kilometer

c) Optimization
Plan 1

a) Baseline b) Targeting
strategy

d) Optimization
Plan 2

e) Optimization
Plan 3

Hay / pasture

ÓÓConventionally tilled corn

Corn, contoured with minimum − tillage and
winter wheat

Corn with minimum − tillage, and/or winter
wheat, and/or contoured; but not all three

ÔÔForest / residential

Note on fig. 6e: fields outlined in bold varied in
management practice combinations, within the
same mapping category, between two near −
optimal solutions.
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Figure 6. Agricultural land use allocation for the baseline scenario and compared evaluation runs.

in this model, is a direct reflection of the relationships built
into the sediment transport component.

Plan 2 primarily placed fields along the watershed edge in
conventionally tilled corn silage and fields along the streams in
contoured, minimum−tillage. As with the targeting strategy and
plan 1, plan 2 (fig. 6d) placed fields with steeper slopes along
the stream in the full BMP combination of contour, minimum−
tillage corn silage with a winter wheat cover crop. However,
plan 2 implemented the full BMP combination on 21 fewer
fields than did plan 1 and 39 fewer than did the targeting strategy
(table 4). Additionally, plan 2, which could select to implement
only part of the BMP combination available to the targeting
strategy and plan 1, implemented at least one BMP on nine
more fields than did plan 1.

As expected, solutions from optimization plan 3 (fig. 6e)
included a more diverse set of management practices. All
available management practices except minimum−tillage
corn silage with a winter wheat cover crop, with and without
contour tillage, were selected (table 4). About 22% of the
agricultural  land was allocated to conventionally tilled corn
silage, with or without contouring. The diversity of practices
selected by the optimization indicates that variation could be
introduced into the watershed while still meeting the target
pollutant load.

Two scenarios in the optimal solution set of plan 3 were
compared to gain a better understanding of the impacts of
different BMPs on the watershed. Only a few fields, indicated
by a bold outline in figure 6e, varied in management practice
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Table 5. Cost−benefit analysis of targeting and optimization.
Targeting Strategy Optimization Procedure[a]

Hours[b] Total Cost[c] Hours Total Cost

Costs: Operation
Information 1 $25 70 $1,750
Processing 0 $0 2 $50
Evaluation 2 $50 8 $200
Variable costs −− −− 20 to 40 $500 to $1,000

Total operation costs 3 $75 120 $3,000
Implementation

Increase in cost from baseline $134,892 $117,426

Total costs $134,967 $120,426

Benefits: Sediment reduction from baseline 2.81 Mg/ha 2.81 Mg/ha
Applicability to numerous watersheds Yes Yes
Flexibility in solutions No Yes

Cost−benefit ratio: 48.03 $/(kg/ha) 42.86 $/(kg/ha)
[a] Optimization procedure implementation costs and benefits are shown for optimization plan 1.
[b] Values estimated based on actual time spent for a case study; details given in Veith (2002).
[c] A person with a PhD in agricultural engineering or related field or with an MS and specialized experience would be appropriately hired for this work at the

U.S. Government GS−11 pay level of approximately $25/hour (U.S. OPM, 2002).

between two near−optimal plan 3 solution scenarios. The fact
that these fields can vary without substantially impacting the
cost−effectiveness of the total solution scenario indicates that
overall cost−effectiveness of the scenario is less sensitive to
choices of management practice for these fields than those of
other fields. By providing this type of sensitivity analysis, an
optimization procedure enables flexibility in implementing
a cost−effective solution. For example, farmers managing the
less sensitive fields can consider a choice of management
practices for those fields without substantially decreasing
overall cost−effectiveness on the watershed. The greater the
number of fields available for a choice of practices, the more
the preferences of the farmers and other stakeholders can be
considered, which ultimately improves the likelihood of wa-
tershed−wide implementation of the critical management
practices.

COST−BENEFIT ANALYSIS

An overall cost−benefit analysis of optimization in
comparison to targeting was performed to determine the
operational feasibility of using optimization. Public costs
associated with operation of the targeting and optimization
methods were considered, as well as costs and benefits
resulting from solution implementation. Public operation
costs included information costs, processing costs, and
evaluation costs. One−time costs (approximately $5,000)
involved in purchasing and configuring a computer with GIS
and analysis software were not considered.

Table 5 summarizes cost−benefit analysis results for the
targeting and optimization plan 1 procedures. Implementa-
tion costs of the other optimization plans in this case study
would vary, as shown in the “cost increase from baseline”
column of table 3, but operation costs would remain constant.
For optimization plan 1, substantial savings in BMP imple-
mentation resulted in a $5 savings per kg/ha of sediment
reduced as compared with targeting, even when both
operational and implementation costs were considered
(table 5). Plans 2 and 3 saved $15 and $49 per kg/ha
reduction, respectively, over targeting.

The favorable cost−benefit ratios of all optimization plans
were due to meeting the same reduction in pollutant loading

as the targeting strategy while reducing average annual costs.
An additional benefit of the optimization procedure was the
potential flexibility in solutions to suit stakeholders while
still meeting the pollutant load criterion.

SUMMARY AND CONCLUSIONS
Optimization and targeting were compared to determine

if selection of BMPs through optimization can meet NPS
reduction goals at a lower cost than a targeting approach. A
baseline scenario, a targeting strategy, and three optimization
plans were compared for a case study watershed in Virginia.
The baseline scenario represented a watershed without NPS
control measures. The targeting strategy applied a compre-
hensive set of BMPs to cropland based on a watershed−inde-
pendent set of rules. The optimization allowed various
subsets of the same set of BMPs and applied them based on
fitness rules defined in a GA−based optimization procedure.

An efficient combination of GA parameters was deter-
mined for the specific problem formulation used by the
optimization procedure. The cost−effectiveness of the opti-
mization procedure and targeting strategy were compared,
and a cost−benefit analysis was performed. Additionally,
differences in BMP allocation were compared across solution
scenarios from the two techniques.

As compared to targeting, the optimization procedure:
� met the same pollution reduction criterion,
� generated BMP scenarios with lower costs,
� found solutions of higher cost−effectiveness and higher

cost−benefit ratios, and
� provided a choice of management practices for non−

critical fields, through identification of alternative
near−optimal solutions.

Targeting is plan−based and can be universally applied
with limited watershed−specific knowledge or data collec-
tion. Application of a performance−based optimization
procedure is more data intensive. Previous modeling of a
watershed can decrease setup time by providing necessary
data, baseline and management scenarios, and knowledge of
the watershed and of its stakeholders, all of which are useful
to the optimization procedure. Thus, as more watersheds are
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modeled, additional requirements of optimization over tar-
geting diminish.

The optimization plans had better cost−benefit ratios,
providing equivalent reduction in pollutant loading as the
targeting strategy while reducing average annual costs.
Additionally, the optimization procedure offers flexibility in
implementation  by providing a number of near−optimal
solutions, which offers alternatives to stakeholders while still
meeting the pollutant load criterion. The advantages, then, of
optimization over targeting may prove quite beneficial in
continuing efforts to control NPS pollution in a cost−effec-
tive manner.
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