Seepage caused tension failures and erosion undercutting of hillslopes

M.L. Chu-Agor, G.A. Fox, R.M. Cancienne, G.V. Wilson

Department of Biosystems and Agricultural Engineering, Oklahoma State University, 209 Agricultural Hall, Stillwater, OK 74078, United States

Department of Biosystems and Agricultural Engineering, Oklahoma State University, 120 Agricultural Hall, Stillwater, OK 74078, United States

Formerly, Department of Biosystems and Agricultural Engineering, Oklahoma State University, Currently, Philip Williams and Associates Ltd., Sacramento, CA, United States

Hydrologist/Soil Physicist, USDA-ARS National Sedimentation Laboratory, Oxford, MS 38655, United States

Received 21 December 2007; received in revised form 20 June 2008; accepted 4 July 2008

Summary Seepage has been suggested as an important factor in gully and river bank erosion. This study investigated the underlying mechanisms of instability by seepage in laboratory studies. A 25-cm tall, 50-cm wide, and 20-cm long soil block with a focused inflow reservoir was constructed to investigate seepage gradient forces and the three-dimensional nature of seepage particle mobilization (i.e., seepage erosion) and undercutting. Experiments included sand and loamy sand soil blocks packed at prescribed bulk densities (1.30–1.70 Mg m\(^{-3}\)) and with an outflow face at various angles (90\(^\circ\), 75\(^\circ\), and 60\(^\circ\)). Constant heads of 15, 25, and 35 cm were imposed on the soil to induce flow. A laser scanner was utilized to obtain the three-dimensional coordinates of the bank and undercut surfaces at approximately 15–30 s intervals. The bulk density of the two different soil types controlled which seepage failure mechanism occurred: (1) tension or "pop-out" failures due to the seepage force exceeding the soil shear strength which was being concurrently reduced by increased soil pore-water pressure, or (2) particle entrainment in the seepage flow, particle mobilization, bank undercutting, and bank collapse when the initial seepage force gradient was less than the resistance of the soil block. For cases experiencing particle mobilization and undercutting, seepage erosion initiated as unimodal (i.e., concentrated at one point) or as multimodal (i.e., initiating at several locations across the bank face), and this result was largely controlled by the bank angle.
Introduction

Seepage has been suggested to potentially play a prominent role in gully and streambank erosion (Abam, 1993; Darby and Thorne, 1996; Crosta and di Prisco, 1999; Rinaldi and Casagli, 1999; Simon et al., 1999). Seepage is now accepted, especially in Europe, as a critically important process in rill and gully development (Faulkner, 2006; Sultan et al, 2004). This research, and its corresponding literature review, are placed in the context of streambank failure but is equally applicable to hillslope failure and gully development in its assessment of seepage mechanisms.

The complex interaction between seepage and other bank stability and instability mechanisms (i.e., fluvial erosion, confining pressure, and vegetation) makes it difficult to fully understand the role of seepage on bank instability. According to Crosta and di Prisco (1999), in order to understand the onset of streambank instability due to seepage, it is important to point out that the collapse is the final result of a complex chain of events taking place during a certain time period. They added that analysis is complex because of the partial saturation of the materials, the three-dimensional geometry of the problem, and the heterogeneity of materials. Hooke (1979) suggested that more detailed work is needed on the effects of soil moisture, the pattern of forces on the bank and the changes in shear strength of the bank material. The ASCE (1998) suggested that methods capable of predicting the stability of streambanks with respect to a range of possible failure mechanisms must be developed.

Some of the complexity regarding seepage stems from the fact that seepage can cause hillslope instability through three different but interrelated mechanisms: (1) increased soil pore-water pressure reducing the shear strength of the soil, (2) seepage gradient forces, and (3) seepage particle mobilization and undercutting. Most research to date has focused specifically on one of these three mechanisms.

Increased soil pore-water pressure

Soil strength or the resisting force which is responsible for bank stability is usually defined using Mohr–Coulomb’s equation:

$$s = c' + (\sigma_n - u_w) \tan \phi'$$ \hspace{1cm} (1)

where s is the shear strength, c' the effective cohesion, ϕ' the effective angle of internal friction, σ_n the total normal stress, and u_w the soil pore-water pressure (Whitlow, 1983; Fredlund and Rahardjo, 1993). In unsaturated soils, decreasing matric suction has the effect of increasing the apparent cohesion of the soil, as described by Fredlund and Rahardjo (1993):

$$s = c' + (\sigma_n - u_w) \tan \phi' + (u_a - u_w) \tan \phi^b$$ \hspace{1cm} (2)

where u_a the soil pore-air pressure and ϕ^b is the angle indicating the rate of increase in the shear strength relative to matric suction and is generally between 10° and 20° (Fredlund and Rahardjo, 1993; Simon et al., 1999). Therefore, an increase in pore-water pressure decreases the effective stress of the soil which in turn decreases the shear strength.

Sultan et al. (2004) analyzed the different slope failure events from the COSTA (continental slope stability) target areas (Adriatic margin, Western Mediterranean margin, and Northeast Atlantic margin). Their study identified the relation between triggering mechanisms and causal factors (e.g. slope angle) on one hand and the stress state and geometrical parameters on the other hand. They concluded that excess pore water pressure was a key parameter for the assessment of slope stability. Rinaldi et al. (2003) monitored and modeled the pore water pressure changes and river bank stability during flow in the Sieve River in Italy. Simulations showed that the development of relatively limited pore water pressure and the disappearance of apparent cohesion were sufficient conditions to trigger a mass failure in a streambank composed predominantly of fine-grained, weakly cohesive soil (silt and sand). Lourenco et al. (2006) investigated the influence of permeability variations on slope behavior by experimental means. Their results revealed no clear link between the failure mode and recorded pore water pressure. Failure was not confined to a single failure mode, but ranged instead from retrogressive slides and lateral spreads.

Seepage gradient forces and tension failures

Seepage forces act on grains of sediment and are proportional to the hydraulic gradient $\frac{\partial \psi}{\partial y}$, where ψ is the matric suction and y is a distance:

$$\tau_s = \rho g d \frac{\partial \psi}{\partial y}$$ \hspace{1cm} (3)

where τ_s is the seepage stress, ρ is the density of the fluid, g is gravity, and d is the grain diameter (Lobkovsky et al., 2004). Budhu and Gobin (1996) studied cohesionless slope instability due to ground-water seepage in order to provide bounds on the seepage direction that provoked slope failures, referred to in this research as tension or “pop-out” failures. They concluded that slope failures resulting from seepage forces were progressive and the minimum stable seepage direction was reached when seepage was parallel to the cohesionless bank slopes. They also showed that the seepage direction that initiates static liquefaction depends on the slope angle and the soil unit weight.
Seepage particle mobilization and undercutting (seepage erosion)

Despite the research conducted on bank instability by increased soil pore-water pressure and tension or "pop-out" failure by seepage forces, our ability to predict bank failure due to seepage particle mobilization (i.e., entrainment in the seepage flow or seepage erosion) remains limited. Although seepage erosion has been observed to occur before massive bank slumping (Bradford and Piest, 1977), it is not until recently that it has been highlighted as a potential failure mechanism of streambanks particularly on the recession limb of the streamflow hydrographs (Fox et al., 2007a; Wilson et al., 2007).

On banks with enough resistance to overcome seepage forces, the seepage gradient can cause particle mobilization when the velocity of water exiting the bank exceeds the critical shear stress leading to bank undercutting. Several studies have incorporated the seepage force given by Eq. (3) into equations for particle mobilization, such as Lobkovsky et al. (2004) who modified the Shields number to include this seepage force and Fox et al. (2006) who derived a seepage erosion sediment transport function with an excess critical discharge formulation. Seepage particle mobilization and undercutting was studied by Fox et al. (2006, 2007a,b) and Wilson et al. (2007) in their two-dimensional lysimeter experiments and bank stability modeling. Wilson et al. (2007) and Chu-Agor et al. (in press) performed step-wise dynamic analysis of the effect of changes in the hillslope geometry due to undercutting on stability. Their work demonstrated that bank stability decreased exponentially as undercutting increased. However, a fully integrated variable saturated flow model with a dynamic geometric and geotechnical model to predict hillslope failure is still lacking. Knowledge on the three-dimensional structure of seepage entrainment and undercutting is needed for this dynamic hydraulic and geotechnical modeling.

Objectives of current study

In this study, the hydraulic conditions producing seepage failure mechanisms (i.e., reduced soil shear strength, seepage gradient forces, and seepage particle mobilization and undercutting) were evaluated. We established the limiting conditions for tension or "pop-out" failures by seepage gradient forces as well as investigated the three-dimensional nature of seepage particle mobilization and undercutting. Therefore, this study was one of the first studies to consider multiple seepage mechanisms simultaneously.

Method and materials

Experimental setup and data collection

A three-dimensional soil block was constructed in a Plexiglas box (Fig. 1). The box had two compartments: (1) a focused water reservoir (10 cm high by 10 cm wide centered at the bottom of the back face of the soil block) where a constant water head was maintained, and (2) the soil compartment which simulated a single layered hillslope, gully sidewall, or streambank with varying bank angles, α. Two different soil textures were used for these experiments: sand and loamy sand. Each soil type was packed in the box at various bulk densities (ρ_b): 1.30, 1.45, and 1.60 Mg m$^{-3}$ for the sand and 1.30, 1.45, 1.50, 1.60, and 1.70 Mg m$^{-3}$ for the loamy sand. Dimensions of the soil block in all experiments were 25 cm high, 50 cm wide and 20 cm long. Also, all experiments were run in duplicate. This research did not evaluate differences in regard to bank height, because Chu-Agor et al. (in press) demonstrated that bank height only impacts initial stability of the bank, not the seepage mechanisms. The bottom of the soil block was lined with a 2.5 cm densely packed clay layer to serve as a restrictive layer. The rest of the block was packed with soil to the desired ρ_b in 2.5 cm lifts. All soil was packed when the soil had reached near residual soil moisture content (i.e., 0.05–0.10 g water per g soil). The soil was then cut to simulate various bank angles, α (90°, 75°, and 60°) such that the horizontal centerline for each bank remained 20 cm away from the water inlet. For the experiments, hydraulic heads (H) of 15, 25, or 35 cm were maintained in the inflow reservoir using a Digi-Root-type infiltrometer.

Data collected during the experiments included the flow arrival time at the bank face, the time of seepage erosion initiation, seepage erosion as a function of time, and the volume of bank collapse. During the experiment, seepage erosion particle mobilization and undercutting was monitored over time using a three-dimensional laser scanner (3D Digital Corporation, Sandy Hook, CT). This laser scanner was a medium range scanning instrument with resolutions of 135 μm at a scanning distance of 300 mm or 210 μm at a scanning distance of 650 mm. The point density of the scan was 255 by 1000. For the laboratory experiments, all scans were captured within 650 mm of the bank face. Data from the 3D scanner were used to characterize the hydraulic controls producing a given seepage mechanism. Scanned images were exported to an ASCII file in terms of the XYZ coordinates of the point cloud. The XYZ coordinates were then used to create 2.0 mm square grids using the inverse to distance power algorithm. A program was developed to compute the eroded volume by subtracting the scanned surface at a given time from the scanned surface of the

Figure 1 Three-dimensional soil block used to simulate seepage instability of single-layer, repacked soil banks. The inflow reservoir is capable of producing seepage heads up to 100 cm.
soil hydraulic parameters as functions of the soil vector within the flow domain using laboratory measured the equation, an uncalibrated two-dimensional seepage Since the direction of the seepage vector was needed in served in the three-dimensional soil block experiments. sion or ”pop-out” failure by seepage gradient forces ob- bank slope. This equation was used to investigate the ten- failure plane considered in this equation is parallel to the clockwise from the inward normal to the bank slope. The unit weight of water, was computed using these ranges of the steady-state seepage vector: 90
\[
\cos \alpha - \sin \alpha \cot \lambda \right) \tan \phi' \right) \sin \alpha' \tag{4}
\]
where \(\gamma' \) is the submerged unit weight of the soil, \(\gamma_w \) the unit weight of water, \(\alpha' \) the bank angle, \(\phi' \) the friction angle, and \(\lambda \) the direction of the seepage vector measured clockwise from the inward normal to the bank slope. The failure plane considered in this equation is parallel to the bank slope. This equation was used to investigate the tension or ”pop-out” failure by seepage gradient forces observed in the three-dimensional soil block experiments. Since the direction of the seepage vector was needed in the equation, an uncalibrated two-dimensional seepage model (SEEP/W) was used to predict the direction of the vector within the flow domain using laboratory measured soil hydraulic parameters as functions of the soil \(\rho_b \). The two-dimensional model was assigned a constant head boundary at the inlet and utilized the soil parameters for each experimental setup discussed later.

In general, the simulation showed two possible directions of the steady-state seepage vector: 90 \(\leq \lambda \leq 180 \) at the inlet and 180 \(\leq \lambda \leq 270 \) at the drainage face (Fig. 3). The FS was computed using these ranges of \(\lambda \) for the loamy sand and sand with \(\rho_b \) equal to 1.50 Mg m\(^{-3}\) and 1.30 Mg m\(^{-3}\), respectively. Eq. (4) consistently predicted failure (i.e., FS < 1.0) for 90 \(\leq \lambda \leq 180 \) (at inlet); however, for 180 \(\leq \lambda \leq 270 \) at the drainage face, it yielded negative FS values which indicated that for cohesionless soil with 30 \(\leq \alpha' \leq 90 \) and 180 \(\leq \lambda \leq 270 \), this equation did not apply; i.e., the failure plane was not parallel to the slope as assumed for these conditions.

For cohesionless dry soil, the maximum stable slope with no external load is its angle of internal friction (Budhu and Gobin, 1996). In the laboratory experiments, the soil block was able to hold the 90° slope because of its increased cohesion due to packing, thereby acting as a cohesive soil mass. In order to consider the effects of cohesion, a new FS equation was derived for failure planes perpendicular and parallel to the bank slope to take into account the two possible directions of the seepage vector.

The FS is generally defined as the ratio of the resisting forces to the driving forces. The driving forces were the vector components of the seepage force and weight perpendicular to the failure plane, while the resisting forces were equal to the shear strength of the soil defined by Mohr–Coulomb equation. Consider a soil element (Fig. 4) with unit width. At failure plane \(y-y \), the FS can be written as the ratio of the shear strength of the soil \((cA_s + \sigma' \tan \phi') \) divided by the sum of the weight and seepage forces parallel to the failure plane \((y-y) \), i.e., \(W \sin \alpha + f_s \sin \lambda \):
\[
FS = \frac{cA_s + \sigma' \tan \phi'}{W \sin \alpha + f_s \sin \lambda} \tag{5}
\]
where \(c' \) is the cohesion, \(A_s \) is the sheared area, \(\sigma' \) is the effective normal force which is the resultant of the forces acting perpendicular to the failure plane \((y-y) \), \(W \) is the weight of the soil element and \(f_s \) is the seepage force on the element. For plane \(y-y \), the effective normal force is
\[
\sigma' = W \cos \alpha' - f_s \cos \lambda \tag{6}
\]
Seepage caused tension failures and erosion undercutting of hillslopes

Figure 3 Seepage vectors as simulated by SEEP/W for a 90° sand bank with an inflow reservoir head of 15 cm and a bulk density, \(\rho_b \), of 1.30 Mg m\(^{-3} \).

\[FS = \frac{\frac{\phi'}{\tan(\phi') + \sin(\phi') \cot(\phi')}}{\cos(\phi') - \sin(\phi') \cot(\phi')} \]

(10)

where \(A_s \) in a two-dimensional model is represented by the linear distance \(z \), which corresponds to the distance from the bank face to the failure plane. Similarly, the factor of safety along failure plane \(x-x \) can be written as

\[FS = \frac{cA_s + \sigma' \tan\phi'}{f_s \cos \lambda - W \cos \phi'} \]

(11)

where \(\sigma' = W \sin \phi' + f_s \sin \lambda \). The FS can then be written as

\[FS = \frac{\frac{\phi'}{\tan(\phi') + \sin(\phi') \cot(\phi')}}{\cos(\phi') - \sin(\phi') \cot(\phi')} \]

(12)

where \(A_s \) in a two-dimensional model is represented by the linear distance \(b \), which corresponds to the height of the bank.

Eqs. (10) and (12) were used to compute the FS at two sections in the flow domain: close to the inlet where \(90^\circ \leq \lambda \leq 180^\circ \) and near the drainage face where \(180^\circ \leq \lambda \leq 270^\circ \). For Eq. (10), \(z \) was assumed to be 0.20 m because tension cracks were observed to form at that section of the soil block when tension or "pop-out" failure occurred. For Eq. (12), \(b \) was assumed equal to 0.20 m, which was where the maximum seepage vector emerged from the bank. The FS was also computed for the same hydraulic conditions (i.e. same \(H \) and \(\phi' \)) but different \(\rho_b \) in order to explain the occurrence of tension or "pop-out" failure.

Figure 4 Free-body diagram of a soil element subjected to seepage gradient forces considering two possible failure planes, \(yy \) and \(xx \). \(W \) is the weight of the soil element; \(\sigma' \) is the effective normal force; \(\tau \) is the shear stress; \(f_s \) is the seepage force on the element; \(\phi' \) is the bank angle; \(k \) is the direction of the seepage vector measured clockwise from the inward normal to the bank slope; \(z \) is the width of the failure block; and \(b \) is the height of the failure block.

\[W = \gamma' V \]

(7)

\[f_s = i \gamma' V \]

(8)

where \(i \) is the magnitude of the hydraulic gradient (i.e., \(\sin \phi' / \sin \lambda \)) and \(V \) is the volume of the soil element. Substituting Eq. (6)–(8) into Eq. (5) results in the following:

\[FS = \frac{cA_s + (\gamma' V \cos \phi' - i \gamma w V \cos \lambda) \tan \phi'}{\gamma' V \sin \phi' + i \gamma w V \sin \lambda} \]

(9)

Dividing through by \(V \) and \(\gamma w \), the FS equation along failure plane \(y-y \) is given by

\[z(x, y) = A \exp \left[-\left(\frac{x-x_0}{\sigma_x} \right)^2 - \left(\frac{y-y_0}{\sigma_y} \right)^2 \right] \]

(13)

where \(z(x, y) \) is the measured seepage headcut from the original bank face, \(A \) is the amplitude or maximum distance of seepage erosion, \(x_0 \) and \(y_0 \) are the center of the amplitude, and \(\sigma_x \) and \(\sigma_y \) are spreads of the seepage headcut. The variables \(\sigma_x \) and \(\sigma_y \) are related to the full width at half-maximum (FWHM) of the Gaussian function:

\[\text{FWHM}_j = 2 \sqrt{2 \ln(2)} \sigma_j \]

(14)

where \(j \) is either \(x \) or \(y \) (Weisstein, 1999). This function was selected because the five parameters could be estimated from measurable characteristics of the headcut.

Each image generated from the scanner was used to identify the initial mode of erosion: unimodal or multimodal. Unimodal erosion represents undercutting that is focused at a single point on the bank face whereas multimodal represents erosion that initiated at more than one location. With this data, trends were investigated between the depth and width of undercutting as functions of soil type, \(\rho_b \), \(\phi' \), and \(H \).
Soil property analysis

For the two soils investigated in this research, samples extracted from the soil block setup (sampled in triplicate) were analyzed in the laboratory to determine particle size distribution and soil hydraulic properties (saturated hydraulic conductivity, \(K_s\), and the soil water retention curve parameters) relative to \(\rho_b\). Particle size analysis was determined by sieve analysis for particles larger than 0.075 mm and the hydrometer method for particles less than 0.075 mm (ASTM Standards D422-63).

The saturated hydraulic conductivity, \(K_s\), was determined on extracted soil cores with bulk densities of 1.30, 1.45, and 1.60 Mg m\(^{-3}\) for the sand and 1.50, 1.60, and 1.70 Mg m\(^{-3}\) for the loamy sand using a falling head permeameter. The \(K_s\) was computed by fitting the measured head loss at time \(t\) to the following equation (McWhorter and Sunada, 1977):

\[
K_s = \frac{q_d L}{A_c} \ln \frac{\Delta h_0}{\Delta h(t)}
\]

where \(L\) is the length of the sample, \(A_c\) is the horizontal area of the soil column, \(q_d\) the horizontal area of the piezometer, \(\Delta h_0\) the initial head (at \(t = 0\)), and \(\Delta h(t)\) is the head at time \(t\).

Water retention was determined on the extracted soil cores using standard test methods (ASTM Standards D3152 and D2325). Water retention data were modeled with RETention Curve (RETC) with the van Genuchten equation and D2325. Water retention was determined on the extracted soil cores using standard test methods (ASTM Standards D3152 and D2325). Water retention data were modeled with RETention Curve (RETC) with the van Genuchten equation and D2325. Water retention was determined on the extracted soil cores using standard test methods (ASTM Standards D3152 and D2325). Water retention data were modeled with RETention Curve (RETC) with the van Genuchten equation and D2325.

Table 1. Particle size distribution and mean particle size (\(d_{50}\), mm) for the two soils used in the soil block experiments

<table>
<thead>
<tr>
<th>Soil texture</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
<th>(d_{50}), mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>99.3</td>
<td>0.7</td>
<td>0.0</td>
<td>0.33</td>
</tr>
<tr>
<td>Loamy sand</td>
<td>84.5</td>
<td>13.4</td>
<td>2.1</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Seepage mechanisms: erosion and undercutting versus tension/"pop-out" failures

The \(\rho_b\) for the two different soil types (i.e., sand and loamy sand) controlled the primary seepage mechanism of the failure process. Seepage resulted in an eventual bank collapse either through: (1) tension or "pop-out" failures when the force of the seepage was greater than the resistance of the soil that further decreased as a result of reduced shear strength from increased soil pore-water pressure, and (2) particle mobilization (i.e., seepage erosion) and bank undercutting when the seepage force gradient was less than the initial resisting force of the soil block with eventual bank collapse due to the combined forces from seepage and the buildup of pore-water pressure (Table 5).

For these experimental conditions, changes in the \(\rho_b\) did not significantly influence the \(\frac{\psi}{H}\) in the soil profile and correspondingly the seepage force, as will be discussed below. However, decreasing the \(\rho_b\) decreased the resistance of the soil by reducing the total normal stress, \(\psi\) and \(\psi'\) as shown in Table 4. This reduction in the resistance of the soil varied based on soil type and along with variability in the driving forces controlled the critical point at which the force of failure became greater than the force of resistance. When the resistive forces are equal to the driving forces without undercutting, pop-out failure occurs. The \(x\)-intercept in Fig. 5 corresponded to the \(\rho_b\) (therefore the combination of \(\psi\) and \(\psi'\)) at which the resistive forces became equal to the driving forces without undercutting. Tension or "pop-out" failures due to seepage gradient forces were observed for all experimental conditions (i.e., \(H\) of 15, 25, and 35 cm and \(\psi'\) of 90, 75, and 60\(^{\circ}\)) when the ratio of the bulk density to the soil grain density, \(\rho_b/\rho_s\) (where \(\rho_b\) was assumed to be 2.65 Mg m\(^{-3}\)) to provide a convenient way to non-dimensionalize the \(\rho_b\), of the sand was less than 0.49. For the loamy sand, the critical \(\rho_b/\rho_s\) between the two failure mechanisms was approximately 0.58 (Fig. 5). Results were consistent among duplicate experiments for each set of experimental
Seepage caused tension failures and erosion undercutting of hillslopes

Table 2 Soil water retention curves estimated using RETC based on pressure plate experiments for the sand and loamy sand soils at the bulk densities used in the soil block experiments

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Bulk density (Mg m(^{-3}))</th>
<th>(\theta_1) (cm(^3) cm(^{-3}))</th>
<th>(\theta_3) (cm(^3) cm(^{-3}))</th>
<th>(a) (cm(^{-1}))</th>
<th>(n)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>1.60 0.05</td>
<td>0.40</td>
<td>0.031</td>
<td>1.33</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>1.45 0.05</td>
<td>0.46</td>
<td>0.026</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>1.30 0.06</td>
<td>0.51</td>
<td>0.048</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loamy sand</td>
<td>1.70 0.06</td>
<td>0.36</td>
<td>0.019</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>1.60 0.04</td>
<td>0.40</td>
<td>0.026</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loamy sand</td>
<td>1.70 0.04</td>
<td>0.43</td>
<td>0.017</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>1.50 0.05</td>
<td>0.46</td>
<td>0.031</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reported values are averages of three replicates (standard deviations given in parentheses).

Table 3 Saturated hydraulic conductivity (\(K_s\)) measured using constant head permeameter test for varying bulk densities of the sand and loamy sand soils

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Bulk density, (\rho_b) (Mg m(^{-3}))</th>
<th>Saturated hydraulic conductivity, (K_s) (cm s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>1.60 0.0077</td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>0.0176</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>0.0284</td>
<td></td>
</tr>
<tr>
<td>Loamy sand</td>
<td>1.70 0.0006</td>
<td></td>
</tr>
<tr>
<td>1.60</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>0.0034</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Geotechnical and erodibility properties (effective cohesion, internal angle of friction and critical shear stress) of the sand and loamy sand soils

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Bulk density, (\rho_b) (Mg m(^{-3}))</th>
<th>Effective cohesion, (c) (kPa)</th>
<th>Internal angle of friction, (\phi') (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>1.60 3.4</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>2.0</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>0.5</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>Loamy Sand</td>
<td>1.70 7.4</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td>1.60</td>
<td>4.9</td>
<td>39.1</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>2.5</td>
<td>36.2</td>
<td></td>
</tr>
</tbody>
</table>

conditions. We hypothesize that greater partially saturated weight (i.e., total weight) was present along the failure plane in the loamy sand soil because of the greater residual moisture content at packing, lower \(K_s\), and lower \(a\) (i.e., higher entry pressure head). This greater partially saturated or total weight in the loamy sand soil led to higher driving forces and less resistive strength as the partial saturation reduced the apparent cohesion. Because the driving force and reduced apparent cohesion were lower for the sand as compared to the loamy sand, the threshold for observed seepage undercutting was reached earlier in the sand (Fig. 5).

For higher \(\rho_b\) and therefore higher resistive strength beyond this critical \(\rho_b/\rho_s\), the amount of resistive force exceeded the driving force and a stable bank developed. This stable bank did not fail unless undercutting also occurred. Therefore, for these experiments, particle mobilization and undercutting generally occurred under cases of higher \(\rho_b\) because of the increased initial bank resistance to the seepage force. Chu-Agor et al. (in press) demonstrated that seepage undercutting exponentially reduced the bank stability with increased amplitude, \(A\), which in this research eventually led to cantilever failures due to seepage particle mobilization and the induced moment by undercutting. It is expected that for exceedingly higher \(H\) (i.e., greater than 35 cm), pop-out failure would be observed at greater \(\rho_b\) because of the overriding affect of seepage gradient forces.

It is hypothesized that the critical \(\rho_b/\rho_s\) will increase for soil types with greater clay content and therefore greater \(c'\), dependent on changes in the \(\rho_b\) relative to soil type. Considering this hypothesis, the occurrence of these immediate collapses, referred to as tension or "pop-out" failures, precludes bank failure by seepage erosion and undercutting being observed in the field. For the non-cohesive seepage layers observed in the field by Wilson et al. (2007), the \(\rho_b\) for the loamy sand was reported to be 1.50 Mg m\(^{-3}\) (i.e., \(\rho_b/\rho_s = 0.57\), which occurred near the boundary of tension or "pop-out" failures observed in this research. They observed seepage undercutting by mobilization of soil particles but did not observe the bank failures in progress in situ. They did observe post-failure evidence of undercutting by seepage erosion in situ. It is possible that these stream banks also experienced tension or "pop-out" failures given the hydraulic gradients imposed on the sediment. The stream restoration project reported by Lindow (2007) was undermined due to bank collapses hypothesized to be due to seepage. Due to the cohesions of the banks (i.e., 10.7 to 17.7 kPa), particle mobilization by seepage flow was probably limited. Instead, Lindow (2007) observed in two-dimensional lysimeter experiments with a repacked bank (10-cm of sand at \(\rho_b = 1.30\) Mg m\(^{-3}\) underlying 15-cm of sandy clay loam) that the tension or "pop-out" failures of this underlying layer eventually led to undermining of the entire bank.
For cases where seepage undercutting occurred, the depth of undercutting required for a bank collapse was most dependent on the soil q_b as compared to a_0 or H for these experimental conditions (Fig. 5). The error bars shown in Fig. 5 represent variability due to the imposed inflow H and a_0. For experiments with the same soil type, x' and H, the required amplitude of undercutting (A), which generally fell within the range of 2.0–7.0 cm, decreased as the q_b decreased (Table 5) due to the corresponding decrease in the bank’s resistive force (i.e., c_0) (Table 4). Correspondingly, the cumulative volume of seepage erosion required to cause bank failure decreased as the q_b decreased (Table 5). The loamy sand soil generally required equivalent to slightly lower amplitudes of undercutting for bank collapse than the sand experiment based on experiments with the same q_b (i.e, 1.60 Mg m$^{-3}$/c_0, 1.45, and 1.30). This effect was most likely due to the approximately equivalent c_0 for the two soils when packed to the same q_b (i.e, 1.60 Mg m$^{-3}$/c_0). Therefore, sediment transport models for seepage erosion should include an explicit consideration for the q_b of the non-cohesive sediment. The sediment transport functions of Howard and McLane (1988) and Fox et al. (2006) include an empirical packing coefficient, along with the K_s, that implicitly account for q_b.

As expected due to the lower q_b, the time for bank failure in experiments with tension or “pop-out” failures was shorter than the time of failure for experiments with seepage particle mobilization. For experiments on the same soil with equivalent x' and p_b, an increase in H generally resulted in less seepage erosion and correspondingly lower amplitudes required for bank failure (Table 5). The increased H theoretically resulted in greater soil pore-water

Table 5

<table>
<thead>
<tr>
<th>x' (degrees)</th>
<th>H (cm)</th>
<th>Sand (q_b (Mg m$^{-3}$))</th>
<th>A (cm)</th>
<th>V_{SE} (cm3)</th>
<th>V_{BF} (cm3)</th>
<th>q_b (Mg m$^{-3}$)</th>
<th>A (cm)</th>
<th>V_{SE} (cm3)</th>
<th>V_{BF} (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>15</td>
<td>1.60</td>
<td>4.9</td>
<td>592</td>
<td>6672</td>
<td>1.70</td>
<td>6.1</td>
<td>1448</td>
<td>6145</td>
</tr>
<tr>
<td>1.45</td>
<td>4.9</td>
<td>475</td>
<td>6465</td>
<td>1.60</td>
<td>2.3</td>
<td>130</td>
<td>4811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>PO*</td>
<td>PO</td>
<td>5727</td>
<td>1.50</td>
<td>PO</td>
<td>PO</td>
<td>6134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>3.0</td>
<td>141</td>
<td>NA</td>
<td>1.60</td>
<td>3.1</td>
<td>180</td>
<td>5574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>15</td>
<td>1.60</td>
<td>6.2</td>
<td>867</td>
<td>4870</td>
<td>1.70</td>
<td>5.2</td>
<td>937</td>
<td>4666</td>
</tr>
<tr>
<td>1.45</td>
<td>2.5</td>
<td>94</td>
<td>4185</td>
<td>1.60</td>
<td>3.4</td>
<td>305</td>
<td>4239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>25</td>
<td>1.60</td>
<td>6.2</td>
<td>800</td>
<td>5996</td>
<td>1.70</td>
<td>3.5</td>
<td>345</td>
<td>2856</td>
</tr>
<tr>
<td>1.45</td>
<td>2.9</td>
<td>177</td>
<td>3325</td>
<td>1.60</td>
<td>3.6</td>
<td>333</td>
<td>3693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>35</td>
<td>1.60</td>
<td>5.8</td>
<td>577</td>
<td>5791</td>
<td>1.70</td>
<td>2.8</td>
<td>216</td>
<td>3429</td>
</tr>
<tr>
<td>1.45</td>
<td>2.8</td>
<td>143</td>
<td>2924</td>
<td>1.60</td>
<td>2.6</td>
<td>213</td>
<td>4409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>15</td>
<td>1.60</td>
<td>6.5</td>
<td>1137</td>
<td>5842</td>
<td>1.70</td>
<td>6.7</td>
<td>1492</td>
<td>5348</td>
</tr>
<tr>
<td>1.45</td>
<td>4.4</td>
<td>437</td>
<td>4713</td>
<td>1.60</td>
<td>6.2</td>
<td>846</td>
<td>4966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>25</td>
<td>1.60</td>
<td>6.6</td>
<td>814</td>
<td>5082</td>
<td>1.70</td>
<td>3.8</td>
<td>306</td>
<td>3366</td>
</tr>
<tr>
<td>1.45</td>
<td>6.0</td>
<td>744</td>
<td>5034</td>
<td>1.60</td>
<td>5.3</td>
<td>288</td>
<td>4117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>35</td>
<td>1.60</td>
<td>5.6</td>
<td>508</td>
<td>4422</td>
<td>1.70</td>
<td>5.8</td>
<td>1191</td>
<td>4196</td>
</tr>
<tr>
<td>1.45</td>
<td>7.0</td>
<td>198</td>
<td>5170</td>
<td>1.70</td>
<td>4.4</td>
<td>626</td>
<td>3650</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are averages of at least duplicate experiments. *PO: tension or “pop-out” failure due to pore-water pressure gradient without seepage undercutting.

* Data not collected during the experiment.

Figure 5 Relationship between maximum depth of undercutting (i.e., amplitude, A) required for a bank failure and the bulk density (q_b) non-dimensionalized by the particle density (q_s) of the soil. The symbols represent the averages relative to varying bank slope and water head for each soil type.

For seepage undercutting to occur, the depth of undercutting required for a bank collapse was most dependent on the soil q_b as compared to x' or H for these experimental conditions (Fig. 5). The error bars shown in Fig. 5 represent variability due to the imposed inflow H and a_0. For experiments with the same soil type, x' and H, the required amplitude of undercutting (A), which generally fell within the range of 2.0–7.0 cm, decreased as the q_b decreased (Table 5) due to the corresponding decrease in the bank’s resistive force (i.e., c_0) (Table 4). Correspondingly, the cumulative volume of seepage erosion required to cause bank failure decreased as the q_b decreased (Table 5). The loamy sand soil generally required equivalent to slightly lower amplitudes of undercutting for bank collapse than the sand experiment based on experiments with the same q_b (i.e, 1.60 Mg m$^{-3}$/c_0, 1.45, and 1.30). This effect was most likely due to the approximately equivalent c_0 for the two soils when packed to the same q_b (i.e, 1.60 Mg m$^{-3}$/c_0). Therefore, sediment transport models for seepage erosion should include an explicit consideration for the q_b of the non-cohesive sediment. The sediment transport functions of Howard and McLane (1988) and Fox et al. (2006) include an empirical packing coefficient, along with the K_s, that implicitly account for q_b.

As expected due to the lower q_b, the time for bank failure in experiments with tension or “pop-out” failures was shorter than the time of failure for experiments with seepage particle mobilization. For experiments on the same soil with equivalent x' and p_b, an increase in H generally resulted in less seepage erosion and correspondingly lower amplitudes required for bank failure (Table 5). The increased H theoretically resulted in greater soil pore-water
pressures in the overlying topsoil which reduced the shear strength of the soil. These results mimic those of Fox et al. (2006, 2007a, b) and Wilson et al. (2007) in that seepage particle mobilization and increased soil pore-water pressure were both important processes leading to bank failures. As x' decreased for a particular p_b and H, the amplitude of the seepage undercut required for bank collapse increased. This result was fundamentally obvious since lower x' resulted in initially more stable banks (higher factor of safety), requiring a greater amplitude of seepage undercut to cause a failure (Chu-Agor et al., in press).

No significant differences (significance level of 0.05) were observed between the mass and volumes of collapsed banks for tension or "pop-out" failures as compared to seepage undercutting (Table 5). For the sand soil, the average volume of bank collapse by tension or "pop-out" failure (i.e., three experiments with p_b equal to 1.30 Mg m$^{-3}$) was 5727 cm3 compared to 5373 cm3 for the seepage undercut banks (P-value = 0.72). The mass of collapsed sand banks by tension or "pop-out" failures was 7.5 kg compared to greater for seepage particle mobilization and undercutting (P-value = 0.60). For the loamy sand, the average volume of tension or "pop-out" failures (i.e., four experiments with p_b less than 1.50 Mg m$^{-3}$) was 5092 cm3 compared to 4220 cm3 for seepage particle mobilization and undercutting (P-value = 0.11). The average mass of tension or "pop-out" failures was 7.1 kg compared to 7.0 kg for seepage particle mobilization and undercutting (P-value = 0.88).

The phase diagram of Lobkovsky et al. (2004) developed for small x' (i.e., $x' < 12^\circ$) suggests that x' greater than 12$^\circ$ will always experience slumping. This was also verified by our laboratory experiments. The uniqueness of this research was that the mechanism of the slumping (i.e., particle mobilization and undercutting versus tension or "pop-out" failure) was highlighted relative to the soil character-istics. Existing slope stability equations for Coulomb failure of non-cohesive slopes should be able to predict failures by seepage forces if banks truly behave as non-cohesive and bank angles are less than the angle of internal friction. However, bank stability analyses capable of modeling seepage particle mobilization and undercutting due to seepage erosion are limited. Some work has been done on the effect of the change in the geometry of the bank due to undercutting on bank failure such as the static analyses reported by Wilson et al. (2007) and the step-wise dynamic analysis by Chu-Agor et al. (in press). However, fully integrated variably saturated flow model with a dynamic geometric and geotechnical model to predict bank failure is still lacking.

Analysis of stability with seepage gradient forces

The theoretical FS for non-cohesive and cohesive banks verified the experimental observations in Fig. 5. Tension or "pop-out" failures occurred when a critical failure plane with $FS < 1.0$ developed within the flow domain. In the soil block experiments, the critical failure plane was located close to the inlet where the seepage force was directed upward. Upward seepage force reduced the effective normal force on the soil, resulting in lower soil shear strength. The magnitude of the seepage force and the reduced cohesion due to lower p_b were the reasons for the tension or "pop-out" failure observed in the soil block experiments.

Table 6 shows the computed FS with and without cohesion at two different locations in the flow domain. When cohesion was not considered, the banks were unstable for most values of λ. However, the soil used in the experiment was cohesive because of packing effects. The measured c' and ϕ' were found to be dependent on the p_b. Therefore, a cohesionless assumption did not represent the condition of the soil used in this experiment.

Table 6 Factor of safety (FS) for the sand (S) and loamy sand (LS) banks computed at two different locations in the flow domain.

<table>
<thead>
<tr>
<th>Bank</th>
<th>p_b (Mg m$^{-3}$)</th>
<th>α' (degrees)</th>
<th>c' (kPa)</th>
<th>ϕ' (degrees)</th>
<th>Observed seepage mechanics (m)</th>
<th>FS at inlet – Eq. (10)</th>
<th>FS at outlet – Eq. (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.30</td>
<td>90</td>
<td>0.0</td>
<td>26.5</td>
<td>PO</td>
<td>0.23 (130)</td>
<td>0.52 (210)</td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>75</td>
<td>0.0</td>
<td>26.5</td>
<td>PO</td>
<td>0.38 (140)</td>
<td>0.61 (210)</td>
</tr>
<tr>
<td></td>
<td>1.45</td>
<td>90</td>
<td>0.0</td>
<td>38.4</td>
<td>SU</td>
<td>0.35 (130)</td>
<td>0.87 (210)</td>
</tr>
<tr>
<td></td>
<td>1.60</td>
<td>90</td>
<td>0.0</td>
<td>40.6</td>
<td>SU</td>
<td>0.36 (130)</td>
<td>0.99 (210)</td>
</tr>
<tr>
<td>S</td>
<td>1.30</td>
<td>90</td>
<td>0.5</td>
<td>26.5</td>
<td>PO</td>
<td>0.38 (130)</td>
<td>0.68 (210)</td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>75</td>
<td>0.5</td>
<td>26.5</td>
<td>PO</td>
<td>0.52 (140)</td>
<td>0.78 (210)</td>
</tr>
<tr>
<td></td>
<td>1.45</td>
<td>90</td>
<td>0.0</td>
<td>38.4</td>
<td>SU</td>
<td>0.89 (130)</td>
<td>1.47 (210)</td>
</tr>
<tr>
<td></td>
<td>1.60</td>
<td>90</td>
<td>0.0</td>
<td>40.6</td>
<td>SU</td>
<td>1.22 (130)</td>
<td>1.98 (210)</td>
</tr>
<tr>
<td>LS</td>
<td>1.50</td>
<td>90</td>
<td>0.0</td>
<td>36.2</td>
<td>PO</td>
<td>0.32 (130)</td>
<td>0.83 (210)</td>
</tr>
<tr>
<td></td>
<td>1.60</td>
<td>90</td>
<td>0.0</td>
<td>39.1</td>
<td>SU</td>
<td>0.34 (140)</td>
<td>0.94 (210)</td>
</tr>
<tr>
<td></td>
<td>1.70</td>
<td>90</td>
<td>0.0</td>
<td>41.9</td>
<td>SU</td>
<td>0.37 (130)</td>
<td>1.06 (210)</td>
</tr>
<tr>
<td>LS</td>
<td>1.50</td>
<td>90</td>
<td>2.5</td>
<td>36.2</td>
<td>PO</td>
<td>0.98 (130)</td>
<td>1.56 (210)</td>
</tr>
<tr>
<td></td>
<td>1.60</td>
<td>90</td>
<td>4.9</td>
<td>39.1</td>
<td>SU</td>
<td>1.60 (140)</td>
<td>2.36 (210)</td>
</tr>
<tr>
<td></td>
<td>1.70</td>
<td>90</td>
<td>7.4</td>
<td>41.9</td>
<td>SU</td>
<td>2.20 (130)</td>
<td>3.24 (210)</td>
</tr>
</tbody>
</table>

Close to the drainage face, the seepage vector is at 180 $\leq \lambda \leq 270$ and the valid failure plane is $x-x$ (see Fig. 4). Lambda (λ) is approximated from maximum seepage vector simulated by the two-dimensional seepage model (SEEP/W).

* PO = Tension or "pop-out" failure.
* SU = Failure included seepage particle mobilization and undercutting.
When cohesion was considered, sand at $\rho_b = 1.30 \text{ Mg m}^{-3}$ was unstable close to the inlet and at the drainage face. The instability close to the inlet caused the tension or "pop-out" failures observed during the experiments. The bank collapsed before seepage erosion undercutting could initiate. At $\rho_b = 1.45 \text{ Mg m}^{-3}$, there were some values of λ which could also result in tension or "pop-out" failure. However, during the experiment, the gradient may have been lower than the limiting value of λ for instability, causing the bank to hold until the initiation of seepage erosion.

The loamy sand showed consistent stability at both locations except for $\rho_b = 1.50 \text{ Mg m}^{-3}$ close to the inlet which could be unstable if $\lambda \leq 130$ degrees. Simulations from the two-dimensional model predicted a λ of approximately

Figure 6 Typical time sequence of seepage erosion headcut formation. Note that the x–y plane is the bank face. Example shown is for the case of a 90° sand bank, 35 cm water head with $\rho_b = 1.60 \text{ Mg m}^{-3}$, (a) $t = 108$ s after flow arrival, (b) Gaussian fit for $t = 108$ s ($R^2 = 0.80$), (c) $t = 125$ s after flow arrival, (d) Gaussian fit for $t = 125$ s ($R^2 = 0.77$), (e) $t = 149$ s after flow arrival, and (f) Gaussian fit for $t = 149$ s ($R^2 = 0.78$).
130° for the maximum seepage vector close to the inlet. Banks with ρ_b equal to 1.60 Mg m$^{-3}$ and 1.70 Mg m$^{-3}$ on the other hand were stable at both locations causing the bank to hold until seepage erosion undercutting initiated.

Unimodal versus multimodal seepage erosion headcuts

For cases in which the seepage process was by seepage erosion and undercutting, it was observed during the experiments that seepage erosion could initiate as a unimodal headcut in which erosion was concentrated at one location on the bank face or as a multimodal headcut in which erosion initiated at different locations on the bank face. Results were consistent among duplicate experiments for each set of experimental conditions. A typical time sequence demonstrating the changes in the seepage headcut as seepage erosion progressed is shown in Fig. 6 for the case of a unimodal headcut. Also shown is the Gaussian fit for these specific headcuts. The strength of the fit, quantified through calculation of the coefficient of determination, or R^2, was greater in cases where the seepage erosion headcuts initiated at one location on the bank face.

It was hypothesized that multimodal headcuts would form in experiments with lower α, lower ρ_b, and lower inflow H. However, for these experimental conditions, the mode of initial seepage erosion undercutting was controlled by α. A 90° bank, regardless of the H, ρ_b, and soil type, started with unimodal erosion while banks with α of less than 90° (i.e., 75° and 60°) started with multimodal erosion. The 90° banks manifested in initial unimodal headcuts horizontally centered along the bank face while the 75° and 60° banks started with multimodal headcuts which initiated at random locations within the seepage layer (Fig. 7), with the locations potentially corresponding to micro-scale preferential flow features created during packing.

The multimodal headcuts generally converged into unimodal headcuts, with this convergence time hypothesized to depend on soil type, ρ_b, α, and inflow H. For α less than 90°, convergence was identified from the scanned images and was verified using the regression coefficient from the fit of the Gaussian function to the three-dimensional undercut shape. An R^2 of at least 0.70 was used as an identifier for convergence. The time for the multimodal headcuts to converge to a concentrated unimodal erosion headcut was prominently controlled by the inflow H. The higher the H the less time it took for convergence to occur for both soil types at different ρ_b (Fig. 8). Contrary to initial hypotheses,

![Figure 7 Example of: (a) unimodal and (b) multimodal seepage erosion headcuts. Note that the x–y plane is the bank face. The unimodal figure is for the case of loamy sand with 90° bank, 35 cm head, and 1.60 Mg m$^{-3}$ bulk density. The bimodal figure is for the loamy sand with 75° bank, 15 cm head, and 1.70 Mg m$^{-3}$ bulk density.](image1)

![Figure 8 Time required for multimodal seepage particle mobilization headcuts for: (a) sand and (b) loamy sand soils to reach unimodal headcut, non-dimensionalized by the saturated hydraulic conductivity, K_s, and the water inflow reservoir head, H.](image2)
At a given A were most likely functions of the similar 7.5 kPa) and relationships on q through the r cohesive strength of the materials. Regression curves the loamy sand as compared to the sand soil due to the lateral spreads (i.e., larger verged, the resulting unimodal headcut possessed greater as a function of H were approximately equivalent for the same soil with different pb but the same x'. Once converged, the resulting unimodal headcut possessed greater lateral spreads (i.e., larger σb), sometimes extending the entire width of the bank face.

Trends in seepage erosion undercut shapes

For a given headcut amplitude (A), the width of the undercut (i.e., σx) was approximately an order of magnitude greater than the height (i.e., σy) of the undercut (Fig. 9). At a given A, slightly larger σx and σy were observed for the loamy sand as compared to the sand soil due to the cohesive strength of the materials. Regression curves through the σy − A data demonstrated similar power-curve relationships for the sand and loamy sand soils. Statistical tests based on non-linear analysis of covariance (Hinds and Milliken, 1987) suggested no significant difference between the A − σy relationships for the two soil types (F-value of 2.00, P-value of 0.16 at a significance level of 0.05).

The σy − A relationships consisted of greater scatter but still demonstrated a fairly uniform pattern between the two soil types. In fact, the sand soils typically followed a strong linear relationship before experiencing data scatter for A > 4 cm. The outliers in σx − A (Fig. 9b) corresponded to measurements of large amplitude undercutting just prior to failure during those experiments with greater stability (i.e., higher pb and lower x’). The scatter from a linear trend line started at smaller A for the loamy sand soil (i.e., A > 1 cm). Differences in the A − σx relationships for the sand and loamy sand soils were less apparent at lower A. Statistical tests using analysis of covariance on the A − σx relationships suggested significant differences between the two soil types (P-value less than 0.001 at significance level of 0.05); however, from a stability perspective, the differences in the predicted widths (i.e., on the order of cm) would not be significant for A less than 10 cm.

These common relationships, especially in the σy − A, were most likely functions of the similar c’ (i.e., less than 7.5 kPa) and φ’ (i.e., between 25° and 40°) between the two soils. No apparent dependency of the σy − A and σx − A relationships on pb was observed when analyzing the data. These results suggest that it may be possible to use such generalized relationships as a first approximation for inclusion of seepage particle mobilization and undercutting in stability models.

Summary and conclusions

Seepage mechanisms of hillslope, gully, and streambank instability include: (1) tension or ‘‘pop-out’’ failure when the seepage forces are greater than the soil resistance as well as reduced shear strength from increased soil pore-water pressure, and (2) particle mobilization (i.e., entrainment in seepage flow) and bank undercutting when the seepage force gradient was less than the resisting force of the soil block with eventual bank collapse due to the combined forces from seepage undercutting, seepage forces, and the buildup of pore-water pressure. The first type of failures (tension or ‘‘pop-out’’) have been analyzed from a geotechnical point of view where the driving static forces exceed the resisting static forces resulting in a block failure with tension crack formation, with the necessity of considering cohesion effects due to packing. The later mechanism occurred when the bank’s shear strength was great enough to resist initial tension or ‘‘pop-out’’ failure of the bank. Seepage velocities became greater than critical velocities necessary for particle mobilization leading to particle entrainment in the seepage flow, undercutting and bank collapse. The undercutting acted in conjunction with reduced shear strength due to increased soil pore-water pressure and the seepage force due to the hydraulic gradient. Within a specific soil type, the occurrence of these mechanisms was largely controlled by the soil’s bulk density, which directly influenced the hydraulic conductivity, effective cohesion, internal angle of friction, and critical shear stress.

For banks experiencing seepage particle entrainment and undercutting, the slope of the bank predominately influenced the undercutting formation. For these experimental conditions, unimodal headcuts were observed throughout the experiment for banks with 90° slopes. On banks with smaller slopes, the headcuts generally initiated as multi-

![Figure 9](Image)

Figure 9 Observed relationship between the amplitude (A) of the headcut and the (a) height as quantified by the spread (i.e., σy), and (b) width of the headcut (σx) for the sand and loamy sand soils. Note that the regression lines shown for σx versus A are for A less than 4 cm.
modal, eventually converting to a unimodal headcut sometime before bank failure and controlled largely by the hydraulic gradient and the bulk density.

Relationships were developed between the amplitude, width, and height of the headcut for both the sand and loamy sand soils investigated in this research. A power law relationship was observed between amplitude and height with the relationship fairly equivalent for both soils. Differences in soil type were more prevalent in the relationships between amplitude and width. While the differences (i.e., on the order of cm) between soil types were statistically significant, it is hypothesized that they would not be significant from a stability perspective. These generalized relationships could be used to predict the width and height of the undercut based on a priori knowledge of the amplitude. The fact is important for the eventual incorporation of this seepage mechanism into stability models.

Acknowledgments

This material is based upon work supported by the Cooperative State Research, Education, and Extension Service (CSREES), US Department of Agriculture (USDA), under Award No. 2005-35102-17209.

References

