Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with
Lactobacillus intermedius NRRL B-3693

Badal C. Saha*
Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research service, United States Department of Agriculture1, Peoria, IL 61604, USA

Received 14 December 2005; received in revised form 27 January 2006; accepted 1 February 2006

Abstract
The production of mannitol by Lactobacillus intermedius NRRL B-3693 using inulin as a substrate was investigated at pH 5.0 and 37°C. The bacterium produced mannitol (106.2 ± 0.3 g l−1) from dilute acid hydrolyzate (pH 2.0, 121°C, 15 min) of inulin (150 g l−1) in 34 h. It also produced mannitol from inulin by simultaneous saccharification and fermentation (SSF) at pH 5.0 and 37°C using inulinase (8 U g−1 substrate). From 300 g l−1 inulin, the L. intermedius B-3693 produced 207.4 ± 1.2 g mannitol in 72 h by SSF. The fermentation time decreased from 72 to 62 h using a mixture of fructose and inulin (1:1, total, 300 g l−1). When fructose and inulin mixture (3:5, total 400 g l−1) was used as substrate, the bacterium produced 227.9 ± 1.8 g mannitol l−1 from both inulin and fructose with a yield of 0.57 g g−1 substrate after 110 h of SSF. This is the highest level of mannitol ever produced by a microorganism reported in literature.

Published by Elsevier Inc.

Keywords: Inulin; Mannitol production; Lactobacillus intermedius; pH-controlled fermentation; Lactic acid production

1. Introduction
Mannitol, a naturally occurring polyol, is widely used in the food, pharmaceutical, medicine, and chemical industries [1]. It ($3.32 lb−1; global market, 30 million lb year−1) is currently produced industrially by high-pressure hydrogenation of fructose/glucose mixtures in an aqueous solution at high temperature (120–160°C) with Raney nickel as catalyst [2]. Typically, the hydrogenation of a 50/50 fructose/glucose mixture results in an approximately 25/75 mixture of mannitol and sorbitol. Since the glucose is hydrogenated exclusively to sorbitol, this means that half of the fructose is converted to mannitol and half of it to sorbitol (30.73 lb−1). As a consequence, the commercial production of mannitol is always accompanied by the production of sorbitol this resulting in an inefficient process [3]. Moreover, it is relatively difficult to separate sorbitol and mannitol, which results in even higher production costs and decreased yields [4]. Some microorganisms can specifically produce mannitol from glucose or fructose without making a sorbitol byproduct [1,5–7]. Mannitol at 180 g l−1 can be easily recovered from the fermentation broth by cooling crystallization. Thus, research efforts have been directed towards production of mannitol by fermentation and enzymatic means [8]. Several heterofermentative lactic acid bacteria (LAB) belonging to the genera Lactobacillus, Leuconostoc, and Oenococcus have been reported to produce mannitol from fructose [3,9–12]. In our previous paper, we reported the production of mannitol and β-lactic acid by Lactobacillus intermedius NRRL B-3693 from fructose using a simplified MRS medium [13]. This (LAB) was selected after screening 72 bacterial cultures from the ARS Culture Collection, Peoria, IL. The method makes use of the capability of the bacterium to utilize fructose as an alternative electron acceptor, reducing it to mannitol with the enzyme mannitol dehydrogenase (EC 1.1.1.67) [14]. In this method, the reducing equivalents are generated by conversion of about one-third of the fructose to lactic acid and acetic acid [13].

* Tel.: +1 309 681 6276; fax: +1 309 681 6427.
E-mail address: sahabc@ncaur.usda.gov.

1 Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.
Inulin is a polyfructan, consisting of linear β-2,1-linked polyfructose chains terminated at the reducing end by a glucose residue [15]. This polymer is a reserve carbohydrate in the roots and tubers of plants such as Jerusalem artichoke, chicory, and dahila. These inulin sources have recently received attention as a potential feedstock for fuel ethanol production [16]. Endoinulinases (2,1-β-fructan fructohydrolase, EC 3.2.1.7) are specific for inulin and hydrolyze the internal β-2,1-fructofuranosidic linkages to yield inulotriose, inulotetraose, and inulpentaose as the main products. Exoinulinases (β-fructofructohydrolase, EC 3.2.1.80) split terminal fructose units from inulin. The synergistic action of endo- and exoinulinases on inulin allows its efficient hydrolysis to fructose. In this paper, we describe the production of mannitol and lactic acid from inulin by L. intermedius NRRL B-3693 using a simultaneous saccharification and fermentation (SSF) approach.

2. Materials and methods

2.1. Materials

Inulin (extracted from the root of the chicory plant, Cichorium intybus, producer: Sensco, Rosendal, The Netherlands) was purchased from Imperial Sensco, Sugarland, TX. Fructose syrup (Kyotoku liquid fructose); Soy peptone type D; Corn steep liquor were supplied by A. E. Staley Manufacturing Co., Decatur, IL; Marcor Development Corp., Carlstadt, NJ; and Cornelius, NC, respectively. Aminex HPX-87P and Aminex HPX-87H columns (300 mm x 7.8 mm, each) and Carbopack C, and Carbowax 20M guard columns (30 mm x 0.46 mm, each) were purchased from Bio-Rad Laboratories, Hercules, CA. All other chemicals including inulinase from Aspergillus oryzae (Fructozyme L, Novozymes A/S, mixture of exo-inulinase, EC 3.2.1.80 and endo-inulinase, EC 3.2.1.7) were purchased from Sigma Chemical Co., St. Louis, MO.

2.2. Dilute acid hydrolysis of inulin

Inulin, at three different concentrations (150, 200, 250, and 300 g l−1), was hydrolyzed at 146 °C for 30 min. The hydrolysate was neutralized to pH 5.0 with 10 M NaOH before use as a substrate for mannitol production.

2.3. Inulinase assay

Inulinase activity was assayed in a reaction mixture (0.5 ml) containing 1% (w/v) inulin, 50 mM acetate buffer, pH 5.0, and appropriately diluted enzyme solution. After incubation at 50 °C for 30 min, the reducing sugar liberated in the reaction mixture was measured by the dinitrosalicylic acid (DNS) method [17]. One unit (U) of inulinase activity is defined as the amount of enzyme which produces 1 μmol reducing sugar as fructose in the reaction mixture min−1 under the above specified conditions.

<table>
<thead>
<tr>
<th>Inulin concentration (%)</th>
<th>Time (h)</th>
<th>Maximum cell density (A650nm)</th>
<th>Mannitol yield (g l−1)</th>
<th>Lactic acid yield (g l−1)</th>
<th>Acetic acid yield (g l−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>34</td>
<td>7.4 ± 0.1</td>
<td>106.2 ± 0.3</td>
<td>23.5 ± 0.3</td>
<td>18.6 ± 0.1</td>
</tr>
<tr>
<td>20</td>
<td>84</td>
<td>8.1 ± 0.6</td>
<td>138.4 ± 6.1</td>
<td>29.9 ± 0.3</td>
<td>25.7 ± 0.0</td>
</tr>
<tr>
<td>25</td>
<td>110</td>
<td>6.4 ± 0.0</td>
<td>174.8 ± 1.1</td>
<td>35.9 ± 0.5</td>
<td>32.0 ± 0.4</td>
</tr>
<tr>
<td>30</td>
<td>43</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

The medium contained dilute acid hydrolysates of inulin, soy peptone 5 g l−1, and corn steep liquor, 50 g l−1. Initial pH was at 5.0 and it was maintained at 5.0 during the entire fermentation period with 2 M NaOH. Values reported are averages from duplicate experiments.

2.4. Bacterial strain

Stock cultures of L. intermedius NRRL B-3693 (obtained from the ARS Culture Collection, Peoria, IL) were maintained in 70% glycerol vials at −70 °C. It was transferred and maintained in agar (1.5%, w/v) slants made with simplified MRS medium [18] containing 10 g peptone, 5 g yeast extract, 2 g ammonium citrate, 0.1 g magnesium sulfate, 0.05 g manganese sulfate, and 2 g dextrose phosphate plus 10 g glucose as carbon source 7 (final pH 6.5) at 4 °C. The simplified MRS medium described above (pH 6.5) was used for the preparation of seed culture. The medium and the substrate were sterilized separately at 121 °C for 15 min. A 250-ml Erlenmeyer flask containing 100 ml of the medium with fructose (20 g l−1) was inoculated with a loopful of cells taken from a stock slant and incubated at 37 °C on a rotary shaker (130 rpm) for 24 h. This culture was used as seed culture.

2.5. Fermentation conditions

Batch culture experiments were performed in pH-controlled 500 ml shake-flasks with an initial medium volume of 300 ml at 37 °C as described previously [13]. The medium contained 3 g Soy peptone D, 50 g corn steep liquor, 2 g ammonium citrate, 0.1 g magnesium sulfate, 0.05 g manganese sulfate, and 2 g dextrose phosphate 7 (final pH 5.0) plus substrate (acid hydrolyzed inulin, inulin, or inulin plus fructose syrup). The initial pH was set at 5.0 and it was maintained at the same pH level by adding 2 N NaOH. Cultures were stirred magnetically at 130 rpm using 1.5 m stir-bars. Samples were withdrawn periodically to determine cell growth, sugar utilization, and product yields. For simultaneous saccharification and fermentation, inulinase enzyme (8 U/g inulin) was added to the fermentation broth at the time of inoculation.

2.6. Analytical methods

Cell growth was monitored by measuring optical density of the appropriately diluted culture broth at 660 nm. Sugar utilization and product analysis were performed using high pressure liquid chromatography (HPLC) (Spectra-Physics, San Jose, CA). For quantification of inulin, fructose, and mannitol, an Aminex HPX-87P column was used. The column was maintained at 85 °C, and the compounds were eluted with 5 mM H2SO4 or 10 mM HNO3 at a flow rate of 0.6 ml min−1. Peaks were detected by refractive index and identified and quantified by comparison to retention times of authentic standards.

3. Results and discussion

3.1. Production of mannitol from dilute acid hydrolyzate of inulin

HPLC analysis of the supplied commercial inulin preparation used showed that it contained 92.6% inulin, 2.8% fructose, 0.5% glucose, and 4.1% disaccharides. Acid hydrolysates (pH 2.0, 121 °C, 15 min) of inulin prepared from 150, 200, 250, and 300 g inulin l−1 were used as substrates for mannitol production.
by *L. intermedius* B-3693. The results are presented in Table 1. It is evident that mannitol production was better at lower inulin concentration. With the increase of inulin concentration up to 250 g l⁻¹, the mannitol productivity decreased significantly even though the final mannitol yield was very good. At 300 g l⁻¹, the bacterium hardly grew and produced no mannitol tested up to 43 h. A time course of fructose utilization and products (mannitol, lactic acid and acetic acid) formation using inulin (150 g l⁻¹) acid hydrolyzate is shown in Fig. 1. The acid hydrolyzate did not contain any residual inulin which means that all inulin was hydrolyzed to mainly fructose and a little glucose.

3.2. Simultaneous enzymatic saccharification and fermentation of inulin by *L. intermedius* B-3693

The *L. intermedius* B-3693 strain did not possess any inulinase activity. Simultaneous enzymatic saccharification of inulin by a commercially available inulinase preparation (8 U/g substrate) and production of mannitol by a commercially available inulinase preparation (8 U/g substrate) was added at the time of inoculating the seed culture. Values reported are averages from duplicate experiments. Symbols: (△), fructose; (□), glucose; (●), mannitol; (▲), lactic acid; (■), acetic acid.

3.3. Production of mannitol from two substrate system (fructose and inulin)

The production of mannitol by *L. intermedius* was investigated using two substrate systems (fructose and inulin) by SSF approach. The result is presented in Table 3. When fructose and inulin mixture (1:1, total, 300 g l⁻¹) was used as substrate, the bacterium produced 206.6 ± 0.8 g mannitol in 62 h (Fig. 3). These results indicate that the fermentation time decreased from 72 to 62 h by providing fructose along with inulin when compared to using only inulin as substrate. When fructose and inulin mixture (3:5, total 400 g l⁻¹) was used as substrate, the bacterium produced 227.9 ± 1.8 g mannitol l⁻¹ with a mannitol yield of 0.57 g g⁻¹ available substrate (Fig. 4). However, the substrates were not completely utilized even after 110 h of fermentation time. The fermentation broth still contained 10.4 ± 0.0 g inulin and 67.6 ± 3.5 g fructose l⁻¹. The reason is not clear.

Table 2

Production of mannitol from inulin by simultaneous saccharification and fermentation with *L. intermedius* NRRL B-3693 at 37 °C

<table>
<thead>
<tr>
<th>Inulin concentration (%)</th>
<th>Time (h)</th>
<th>Mannitol yield (g l⁻¹)</th>
<th>Lactic acid yield (g l⁻¹)</th>
<th>Acetic acid yield (g l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inulin (15%)</td>
<td>34</td>
<td>99.8 ± 33.4</td>
<td>28.5 ± 3.5</td>
<td>16.3 ± 4.1</td>
</tr>
<tr>
<td>Inulin (20%)</td>
<td>42</td>
<td>138.8 ± 6.6</td>
<td>32.4 ± 0.2</td>
<td>25.1 ± 1.1</td>
</tr>
<tr>
<td>Inulin (25%)</td>
<td>48</td>
<td>174.1 ± 4.5</td>
<td>38.4 ± 1.8</td>
<td>39.5 ± 0.1</td>
</tr>
<tr>
<td>Inulin (30%)</td>
<td>72</td>
<td>207.4 ± 1.2</td>
<td>45.9 ± 0.3</td>
<td>35.5 ± 0.3</td>
</tr>
<tr>
<td>Inulin (35%)</td>
<td>90</td>
<td>222.0 ± 1.3</td>
<td>49.2 ± 0.0</td>
<td>37.8 ± 0.3</td>
</tr>
</tbody>
</table>

The medium contained inulin, soy peptone 5 g l⁻¹, and corn steep liquor, 50 g l⁻¹. Initial pH was 5.0 and it was maintained at 5.0 during the entire fermentation period with 2M NaOH. Inulinase (8 U g⁻¹ substrate) was added at the time of inoculating the seed culture. Values reported are averages from duplicate experiments.
bacterium can be easily used to produce mannitol at greater than 180 g l\(^{-1}\). However, the bacterium grew poorly and produced little mannitol even at 144 h of incubation when a substrate concentration of 500 g l\(^{-1}\) (fructose, 150 g l\(^{-1}\) and inulin, 350 g l\(^{-1}\)) was used (data not shown). This indicates that this level of substrate inhibited the growth of the bacterium. Moreover, adding fructose to inulin (two substrate fermentation) does not provide additional benefit with respect to mannitol production.

In conclusion, inulin containing substrates can be easily used for production of mannitol by fermentation where such renewable substrates are readily available. As mannitol is a much higher value product than ethanol and its demand is growing rapidly, it would be economically advantageous to make mannitol from inulin by fermentation.

Acknowledgment

The author thanks Gregory J. Kennedy for excellent technical assistance.

References