Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays

Yu-Rong Xie a, Zhi-Yuan Chen a,*, Robert L. Brown b, Deepak Bhatnagar b

a Department of Plant Pathology and Crop Physiology, 302 Life Sciences Building, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
b Southern Regional Research Center, USDA-ARS, New Orleans, LA 70179, USA

ARTICLE INFO

Article history:
Received 16 April 2009
Received in revised form 17 July 2009
Accepted 17 July 2009

Keywords:
Antimicrobial
Corn
Expression profiles
PR10
Ribonuclease

A novel PR10 gene (ZmPR10.1) was isolated from maize and its expression and function were compared with the previous ZmPR10. ZmPR10.1 shares 89.8% and 85.7% identity to ZmPR10 at the nucleotide and amino acid sequence level, respectively. ZmPR10 and ZmPR10.1 were mainly expressed in root tissue with low expression in other tissues. ZmPR10.1 had significantly lower expression than ZmPR10 in all tissues examined. The expression of both ZmPR10 and ZmPR10.1 was induced by most abiotic stresses including SA, CuCl₂, H₂O₂, coldness, darkness and wounding during the 16-h treatments, and biotic stresses such as Erwinia stewartii and Aspergillus flavus infection. However, ZmPR10.1 was induced only 2 folds and down-regulated thereafter, whereas ZmPR10 remained induced during the 16-h NAA treatment. Also, inoculation with Erwinia chrysanthemi caused about 2-fold induction in ZmPR10.1 expression 60 HAT but not significant changes for ZmPR10. Both ZmPR10.1 and ZmPR10 showed RNase activity in vitro with an optimal pH and temperature of 6.5 and 55 °C. Their RNase activities were significantly inhibited by low concentrations (1.0 mM) of Cu²⁺, Ag⁺, Co²⁺, SDS, EDTA or DTT. However, ZmPR10.1 possessed significantly higher (8-fold) specific RNase activity than ZmPR10. Also, ZmPR10.1 showed a stronger inhibition against bacterium Pseudomonas syringae pv. tomato DC3000 in vivo and fungus A. flavus in vitro than ZmPR10, indicating that ZmPR10.1 may also play an important role in host plant defense.

© 2009 Elsevier GmbH. All rights reserved.

Introduction

Plants grown under natural environmental conditions are often attacked by a variety of pathogens including viruses, bacteria, fungi and nematodes. However, plants do not have a circulating adaptive immune system like the one seen in humans. Instead, plants protect themselves with a mechanism consisting of active and passive defenses (Ruiz et al., 2002). In this case, pathogen invasion is recognized by inducible or constitutive proteins in plants that bind specific pathogen-derived proteins (Odjakova and Hadjivanova, 2001). Pathogen-related proteins (PR) are a major category of the host proteins induced during pathogen attacks. In the past years, many PR proteins have been identified and categorized into 17 families (PR1 to PR17) based on their different structures and biological activities (Christensen et al., 2002).

Unlike most other PR proteins with an extracellular destination, PR10 proteins are typically intracellular, small (16–19 kDa) and acidic with similar three-dimensional structures (Ziad et al., 2001; Liu and Ekramoddaulah, 2006). PR10 proteins have been reported to have various functions ranging from antimicrobial activity, in vitro ribonuclease activity, enzymatic activities in plant secondary metabolisms, and roles in abiotic stresses (Liu and Ekramoddoulah, 2006). Therefore, PR10 proteins may play important roles in plant defense against pathogen attack. In addition, some PR10 proteins possess ligand-binding ability like cytokinin-specific binding activity in plant (Fujimoto et al., 1998; Gonneau et al., 2001), and constitutive expression of a PR10 cDNA from Brassica napus results in the increase of cytokinin level (Srivastava et al., 2006). These studies demonstrate some PR10 proteins also play roles in plant growth and development through modulating the endogenous cytokinin level. The silencing of MtPR10-1 from Medicago truncatula led to the induction of a new set of PR proteins after infection with Aphanomyces euteiches (Colditz et al., 2007), suggesting that there is a relationship between PR10 and other PR proteins.

Abbreviation: ABA, abscisic acid; CHES, 2-(cyclohexylamino)ethanesulfonic acid; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; GA, gibberellic acid; GUS, β-glucuronidase; HAT, hours after treatment; IPTG, isopropyl-β-D-thiogalactopyranoside; KT, kinetin; MeJA, methyl jasmonate; MES, 2-(N-morpholino)ethanesulfonic acid; NAA, naphthalene acetic acid; NIA, naphthalene acetic acid; Ni-IDA, nickel-iminodiacetic acid; SA, salicylic acid; SDS, sodium dodecyl sulfate

* Corresponding author. Tel.: +1 225 578 7850; fax: +1 225 578 1415.
E-mail address: zchen@agcenter.lsu.edu (Z.-Y. Chen).

© 2009 Elsevier GmbH. All rights reserved.
In addition, many plant species have more than one PR10 protein, such as 18 PmPR10s from Pinus monticola, 3 GbPR10s from Gossypium barbadense, 7 LIPR10s from Lupinus luteus, and 5 OsPR10s in Oryza sativa (Liu and Ekramoddoullah, 2006). Recently, a PR10 gene (ZmPR10) was found to be associated with maize kernel resistance to Aspergillus flavus infection/alfatoxin contamination, and was cloned from maize based on partial peptide sequences of the protein (Chen et al., 2006). The ZmPR10 protein, over-expressed in Escherichia coli, possessed ribonuclease activity and inhibited A. flavus growth (Chen et al., 2006). The objectives of the present study were to investigate the presence of ZmPR10 homologues in maize, their differences in expression and in response to abiotic and biotic stresses, and their potential contribution to host resistance. Here, we report the identification of a second PR10 (ZmPR10.1) and its comparisons with ZmPR10 in expression profiles including tissue-specificity and responses to stresses, RNA degradation ability, and antimicrobial activity.

Materials and methods

Plant materials and growth conditions

Maize (Zea mays L.) inbred line MI82, which is resistant to Aspergillus flavus, was used in this study. Surface-sterilized seeds were germinated in pots with sterilized potting mix (Piedmont Pacific, Statham, GA) and grown under continuous light (170 μmol m⁻² s⁻¹) at room temperature (22–25 °C). After 2 weeks of growth, seedlings at the four-leaf stage (V4-stage) were used for various treatments. For tissue-specific expression patterns, the leaves, stalks, sheaths, husks, silks and immature kernels were harvested from plants grown in the greenhouse with natural light. For root tissue, samples were collected from seedlings (VI-stage) grown hydroponically in B5 medium (Gamborg et al., 1968). Wild-type and transgenic Arabidopsis (Col-0) plants were grown on the same potting mix as above in a growth chamber under the following light and temperature conditions: 22 °C, 16-h day and 18 °C, 8-h night.

Experimental treatments

For phytohormone and chemical treatments, one of the following solutions was used: 5.0 mM SA, 100 μM ABA, 100 μM MeJA, 100 μM KT, 10 μM NAA, 100 μM GA₃, 100 μM ethephon, 200 μM H₂O₂, 200 mM NaCl or 1.0 mM CuCl₂ was sprayed on all leaves. Control plants were sprayed with distilled water. The concentration of phytohormone and chemical treatments chosen was based on the studies by Park et al. (2004) and Liu et al. (2006). For cold-treatment, the seedlings were transferred to a 4 °C chamber whereas plants kept at room temperature were used as a control. Potted seedlings kept in the chamber at 23 °C without lights or wounded with a cork boer to produce three 5 mm circles on each leaf were used as the dark and wounded treatments, respectively.

For leaf-pathogen inoculations, Clavibacter michiganensis subsp. nebraskensis, Erwinia chrysanthemi and Erwinia Stewartii, which cause maize leaf freckles and wilt, stalk and top rot, and Stewart’s disease, respectively, were used in this study. Overnight cultures in YDC medium (1% yeast extract, 2% glucose, 2% CaCO₃) were infiltrated into the second and third leaves of the V4-stage seedlings. Leaves infiltrated with YDC medium only were used as a control. Control and treated leaves were harvested at 0, 12, 24, 36, 48 and 60 h after treatment (HAT). For A. flavus inoculation, ears of field grown maize plants were inoculated through injection of 5 mL of A. flavus conidia suspension (5 × 10⁶ mL⁻¹) 14 d after pollination (DAP) through the silk channel. Control ears were wounded with a needle only. Ears were harvested 1, 2, 4, 7, 10, 14, 18 and 22 d after inoculation (DAI), which correspond to various phases of kernel development: mitotic activity (10–14 DAP), DNA polyenization (14–18 DAP), DNA degradation and onset of linear grain-fill (20–22 DAP). All leaves and kernels with or without treatments were frozen in liquid nitrogen after harvest and stored at −80 °C until use.

RNA and DNA isolation

Total RNA from various tissues was extracted using the RNase Kit (Qiagen, Stanford, CA) according to the manufacturer’s instructions. Genomic DNA was isolated from leaves using the GenElute Plant Genomic DNA Miniprep Kit (Sigma, St. Louis, MO). The quality and concentration of RNA and genomic DNA samples were examined by agarose gel electrophoresis and analyzed with a ND-1000 Spectrophotometer (Thermo, Wilmington, DE), respectively.

Cloning of a new pathogenesis-related protein 10 gene

During a database search with a previously cloned ZmPR10 (Chen et al., 2006), a sequence (GenBank AC203883) highly homologous to ZmPR10 was identified. A pair of specific primers (G101: 5’-CTAGGCAACAGCCAGCGCCGTCAAG-3’ and G102: 5’-GCCGTAGAAACAAACAAAAAGCCA-3’) was synthesized based on the sequence information of AC203883 to clone this new putative PR10 gene (termed ZmPR10.1) from both the genomic DNA and cDNA of maize leaves. The first strand of cDNA was synthesized with an oligo(dT)₁₆ primer and M-MLV reverse transcriptase (Promega, Madison, WI) under the following conditions: 75 °C for 5 min, 37 °C incubation for 1 h, followed by 75 °C for 15 min. The PCR product, amplified with two gene-specific primers, was gel purified and ligated into a pGEM T-Easy vector (Promega) and confirmed through DNA sequencing. Sequence data from this article have been deposited at GenBank under accession number FJ897503.

Construction of bacterial and plant expression vectors and transformation

The primer pair G103 (5’-ACTCATATATGAGCCCTCCACCAACACACAACATGGGCTCCGCCAACAGCTG-3’, Nde I site underlined) and G104 (5’-ATACGCCCGCGGTAGTTGAGCTCCGCAGTGTTG-3’, Not I site underlined) was used to amplify the coding region of ZmPR10.1 from cDNA. For ZmPR10, the primer pair G105 (5’-CTGCAATGATGCGCTCCGCACAAAGCTGCT-3’, Nde I site underlined) and G106 (5’-AATCGCGCGCGCGCAGTGAGGCTCCGCAGGGGTGGC-3’, Not I site underlined) was used. The resulting PCR products digested with Nde I and Not I were cloned into the corresponding sites of the pET20b plus vector (Novagen, Madison, WI) to form pET20b-ZmPR10 and pET20b-ZmPR10.1, respectively. After sequencing, the two vectors were transformed into Escherichia coli BL21 (DE3) for protein over-expression.

The coding region of ZmPR10.1 was amplified from cDNA using primer pair G107 (5’-GAGAGATCTATGAGGGCTCCACCAACAGC-3’, Bgl II site underlined) and G108 (5’-CTGAGTATCTTGTAGGCTCCGACTACGCTGTTG-3’, Spe I site underlined). The PCR product digested with Bgl II and Spe I was cloned into the corresponding sites of the pCMV1A302 vector (http://www.cambia.org) to generate the coding region of ZmPR10.1::GFP plasmid, which was verified through DNA sequencing. The plasmid 33S-ZmPR10.1::GFP was constructed in the same manner with primer pair G109 (5’-CTAGAGATCTATGAGGGCTCCACCAACAGC-3’, Bgl II site underlined) and G110 (5’-CTGAGTATCTTGTAGGCTCCGACTACGCTGTTG-3’, Spe I site underlined). Wild-Type Arabidopsis (Col-0) was transformed with the
Agrobacterium tumefaciens GV3101 harboring the plasmid 35S-ZmPR10::GFP or 35S-ZmPR10.1::GFP using the floral dip method (Clough and Bent, 1998). Also, Arabidopsis plants transformed with pCAMBIA1302 only were used as a control. Transgenic plants of homozygous T3 seeds were used for evaluating their antibacterial abilities.

For assessing the ZmPR10.1 and ZmPR10 expression at protein level indirectly, GUS expression vectors under the control of corresponding ZmPR10.1 and ZmPR10 promoters were constructed. Putative promoter of ZmPR10.1 (pZmPR10.1) and promoter of ZmPR10 (pZmPR10) were amplified based on their sequences from GenBank (AC203883 and AC215303 for ZmPR10.1 and ZmPR10, respectively) using primer pairs, G111 (5'-ACAGCTCATGGCTTACGATCG-3', Hind III site underlined) and G112 (5'-AGTGGATCCGGCTGCTTGCTGAGGCGATGC-3', BamHI I site underlined), G113 (5'-GAGAAGTTGGGTTGATGTTGGCCGATTA-3', Hind III site underlined) and G114 (5'-CCGGATCTTAC-TACTTGATGATCAGC-3', BamHI I site underlined), respectively. The PCR products digested with Hind III and BamHI I were cloned into the corresponding sites of pBI121 vector (Clontech, Palo Alto, CA) to produce constructs pZmPR10.1-GUS and pZmPR10-GUS, respectively. The resulting constructs were introduced into A. tumefaciens GV3101 and then into wild-type Arabidopsis using the floral dip method.

Real-time PCR

For quantitative real-time PCR, cDNA was synthesized by using the TaqMan Reverse Transcription Reagents (Applied Biosystems, Foster, CA) according to the manufacturer's instructions. The primer pairs G115 (5'-CAAGCTCATCCAGACACAC-3') and G116 (5'-CGATCTCACAAGTTGCTGG-3'), G117 (5'-AGCTCAGTACGCTGCCC-CAAGT-3') and G118 (5'-CCGGATCTTAC-TACTTGATGATCAGC-3'), were used for ZmPR10.1 and ZmPR10, respectively. Quantitative real-time PCR was performed using the ABI Prism 7000 Sequence Detection System (Applied Biosystems) according to the manufacturer's instructions in a 25 μL reaction volume containing 25 ng cDNA. The level of 18S RNA transcript amplified with primer pair G119 (5'-GAGAACGCGTCCACCATCCA-3') and G120 (5'-ACGGCGC-CGGATTGTATGATC-3') was used as an internal control. The relative expression level of target gene among different tissues of maize or in different transgenic lines of Arabidopsis was calculated using ΔΔCt method, in which: ΔΔCt = Ct(18S rRNA)−Ct(target). The data of target gene expression after treatments are the ratio of expression of target gene in different tissues of maize or in different transgenic lines of Arabidopsis or zinc to the control.

Fluorometric assay of GUS protein

Tissues from 2-week-old transgenic Arabidopsis plants were grown on solid medium containing 4.4 g L\(^{-1}\) Murashige and Skoog salt (Sigma), 1% sucrose, pH 5.8, and 8% agar were ground into powder using liquid nitrogen and then suspended in 400 μL of GUS extraction buffer (100 mM sodium phosphate, pH 7.0, 1 mM EDTA, 1 mM DTT, 1% Triton X-100 and 10% glycerol). After centrifuging samples at 14,000 \(\times\) g for 15 min at 4 °C, the supernatant was assayed for protein concentration (Bradford, 1976) and GUS activity (Jefferson et al., 1987). Ten microliters of protein extract were used for the GUS assay. After incubation for 30 min at 37 °C, the reaction was stopped by adding 1 mL of ice-cold 4 M LiCl to the mixture and left on ice for 15 min. Insoluble GUS activity was determined by UV absorbance at 260 nm (OD\(_{260}\)) with a Nanodrop spectrophotometer (Thermo). One unit of enzymatic activity is defined as the amount of protein that brings an increase of 1 OD\(_{260}\) after 30 min of incubation under the specified conditions (Zhou et al., 2002). The positive and negative controls for the activity assay were the RNase A and the Ni-IDA column flow-through fraction, respectively.

Effect of pH, temperature and reagents on the RNase activity

The effect of pH on ZmPR10.1 and ZmPR10 RNase activity was analyzed using 50 mM of the following buffers with pH values

Over-expression and purification of PR10 proteins in E. coli

The pET20b-ZmPR10.1 and pET20b-ZmPR10 constructs contain a His-tag at the downstream of the target gene to allow purification of the over-expressed proteins with a nickel-affinity column. After 3 h of induction by 0.4 mM IPTG at 37 °C according to the manufacturer's instructions, the cells were harvested by centrifugation at 4000 \(\times\) g for 10 min at 4 °C. The pellets were resuspended in 20 mM Tris–HCl (pH 7.9) containing 0.5 M NaCl and 5 mM imidazole (Buffer A) and homogenized using a French Pressure Cell Press (SLM Aminco, Lorton, VA). The supernatant of cell lysate was recovered by centrifugation (13,000g, 15 min) and then applied onto a Ni-IDA affinity column (Novagen). The column was washed with 20 volumes of Buffer B (20 mM Tris–HCl, pH 7.9, 0.5 M NaCl, and 60 mM imidazole) and the over-expressed recombinant protein was eluted with Buffer C (20 mM Tris–HCl, pH 7.9, 0.5 M NaCl, and 1.0 M imidazole). After removal of imidazole through fast protein liquid chromatography, the purified proteins were used for biochemical and antifungal assays.

Nucleic acid degradation

For RNA degradation assays, two equal concentrations (10 and 40 μg mL\(^{-1}\)) of the purified recombinant proteins of ZmPR10 and ZmPR10.1 were individually mixed with 10 μg of total RNA from maize root tissue. For determining potential DNA degradation activities, the two purified proteins were mixed separately with 5 μg genomic DNA isolated from maize leaves. The mixtures were then incubated for 0.5 h at 50 °C for RNA and at room temperature for DNA (Yan et al., 2008). At the end of incubation, the PR10 protein (both ZmPR10 and ZmPR10.1) was removed by phenol–chloroform (1:1) extraction, and the nucleic acids were separated on 1.5% agarose gels for RNA or 0.8% gels for DNA, and stained with 0.003% ethidium bromide to visualize the extent of nucleic acid degradation. RNase A (New England Biolabs, Ipswich, MA) and RNasin (Applied Biosystems) were included as positive and negative controls, respectively. The use of heat-inactivated (boiled for 20 min) PR10 proteins was also included as negative controls.

Assay of ribonuclease activity

For RNA degradation assays, two equal concentrations (10 and 40 μg mL\(^{-1}\)) of the purified recombinant proteins of ZmPR10 and ZmPR10.1 were individually mixed with 10 μg of total RNA from maize root tissue. For determining potential DNA degradation activities, the two purified proteins were mixed separately with 5 μg genomic DNA isolated from maize leaves. The mixtures were then incubated for 0.5 h at 50 °C for RNA and at room temperature for DNA (Yan et al., 2008). At the end of incubation, the PR10 protein (both ZmPR10 and ZmPR10.1) was removed by phenol–chloroform (1:1) extraction, and the nucleic acids were separated on 1.5% agarose gels for RNA or 0.8% gels for DNA, and stained with 0.003% ethidium bromide to visualize the extent of nucleic acid degradation. RNase A (New England Biolabs, Ipswich, MA) and RNasin (Applied Biosystems) were included as positive and negative controls, respectively. The use of heat-inactivated (boiled for 20 min) PR10 proteins was also included as negative controls.
ranging from 3.0 to 11.0: citrate buffer (pH 3.0–4.0), MES buffer (pH 4.5–6.5), Tris–HCl buffer (pH 7.0–8.5) and CHES buffer (pH 9.0–11.0) (Yan et al., 2008). After incubation of PR10 protein and yeast tRNA mixture in these buffers for 30 min at 50°C the RNA degradation activity was measured as above. The optimal temperatures of RNase activity for ZmPR10.1 and ZmPR10 were determined by assaying RNA degradation at temperatures ranging from 20 to 90°C in 50 mM MES buffer (pH 6.0) for 30 min. The reaction was terminated and free tRNA was determined as described above. The effect of metal ions (Ca2+, Mg2+, Ag+, Zn2+, Mn2+, Fe2+, Cu2+, Co2+) EDTA, protein reducing agent DTT and detergent SDS on RNase activity was also determined. Protein and yeast tRNA were mixed with 200 μL of 50 mM MES buffer (pH 6.0) containing 1.0 mM (final concentration) of each reagent and incubated at 50°C for 30 min. The RNase activity was then determined as above.

Antimicrobial activity assays

The ability of PR10 proteins to inhibit the growth of A. flavus, an opportunistic pathogen that infects maize kernels both pre- and post-harvest and causes aflatoxin contamination in many warm climate regions, was assayed following Chen et al. (2006). Conidia of A. flavus (AF13, ATCC 96044) were incubated in potato dextrose broth (PDB) with boiled or native protein at a concentration of 20 or 50 μg mL−1 (ZmPR10.1 or ZmPR10) at 30°C. The germination and growth of conidia were examined at 12 and 20 h after incubation.

The virulent bacterial strain Pseudomonas syringae pv. tomato DC3000 was used to investigate the antibacterial activity of both ZmPR10.1 and ZmPR10 in Arabidopsis. The inoculation of the 6-week-old transgenic plants was performed according to Berger et al. (2007). The overnight culture of P. syringae DC3000 in King’s B medium (2% peptone, 0.15% K2HPO4, 0.15% MgSO4·7H2O, 0.075% glycerol) was diluted 1:50 with fresh medium and incubated for another 2 h at 28°C. The bacteria were harvested by centrifugation at 5000 g for 10 min at 4°C, washed with 10 mM MgCl2 for three times, and diluted to a final concentration of optical density (OD600) 0.005 (equivalent to 107 cfu/mL). For each inoculation, 10 μL of bacterial suspension was gently infiltrated into the abaxial side of the leaf with a 0.5 mL needleless plastic syringe. Control leaves were inoculated with 10 μL of 10 mM MgCl2. Four mature leaves of each plant were inoculated and at least three plants were inoculated for each transgenic line. These infiltrated leaves were detached and photographed 4 d after inoculation. The lesion sizes of infiltrated leaves were measured using APS Assess software (APS Press, Saint Paul, MN).

Data analysis

All real-time PCR and RNase activity experiments were repeated at least three times. The data were analyzed using the Statistical Analysis System (version 9.1, SAS Institute, Cary, NC). Significant changes in gene expression were determined using Fisher’s least significant differences (P = 0.05).

Results

ZmPR10.1 cDNA cloning and sequence analysis

The cloned cDNA and genomic DNA of ZmPR10.1 were 591 and 668 bp, respectively. Comparison between cDNA and genomic DNA shows that ZmPR10.1 contains one 77-bp intron and two exons of 483 bp in total, capable of encoding a peptide of 160 amino acids (Fig. 1A). There is a typical GxxGxxG motif at amino acid residues 48–53 (Fig. 1A, underlined) of ZmPR10.1, which is known as the “P-loop” (phosphate-binding loop) and is frequently found in protein kinases as well as in nucleotide-binding proteins (Saraste et al., 1990). Further, NetPhos, a web-based software (http://www.cbs.dtu.dk/services/NetPhos/) predicted that the four serine (Ser13, 102, 120 and 140, in bold italic) and two tyrosine (Tyr122 and 151, in bold italic) residuals are potential phosphorylation sites (Fig. 1A). ZmPR10.1 and ZmPR10 share an 89.8% identity at the DNA level and an 85.7% identity at the protein level (Fig. 1B and C). The predicted molecular mass and isoelectric point for ZmPR10.1 are 16,902.2 Da and 5.36, which are similar to those of ZmPR10 (16,942.3 Da and 5.38) (Chen et al., 2006).

Tissue-specific expression of ZmPR10.1 and ZmPR10 and β-glucuronidase (GUS) activities driven by their promoters

The specific expression of ZmPR10.1 and ZmPR10 in various tissues (root, stem, leaf, sheath, husk, silk and immature kernel) was also determined using quantitative real-time PCR. The results

![Fig. 1. Nucleotide and protein sequence of ZmPR10.1 and its comparison to ZmPR10.](image-url)
showed that both ZmPR10.1 and ZmPR10 are expressed constitutively in all tissues examined (Fig. 2). A much higher expression was detected in root tissue than other tissues (6.6–164.5-fold and 11.1–74.6-fold higher than other tissues for ZmPR10.1 and ZmPR10, respectively). The level of expression between the two PR10 genes was also different. ZmPR10 expression was significantly higher than that of ZmPR10.1 in all tissues examined (14.0, 138.1, 5.0, 18.4, 8.3, 8.6 and 10.0-fold for root, stalk, leaf, sheath, husk, silk and immature kernel, respectively) (Fig. 2). The level of ZmPR10.1 expression was barely detectable in stalk and silk tissues.

GUS activities driven under the promoters of ZmPR10.1 and ZmPR10 in transgenic Arabidopsis were also compared to estimate their expression differences at protein level. GUS activities were detectable in both leaf and root tissues from transgenic seedlings of either pZmPR10.1 or pZmPR10. The GUS activities in the root and leaf tissues containing the pZmPR10.1 were 0.14 and 0.03 nmoles MU min$^{-1}$ mg$^{-1}$ protein, respectively, compared to 8.72 and 0.45 nmoles MU min$^{-1}$ mg$^{-1}$ protein in their corresponding tissues expressing the pZmPR10 (Fig. 3).

ZmPR10.1 and ZmPR10 expression in leaf tissue in responses to phytohormone treatments

The ZmPR10.1 and ZmPR10 expression did not change significantly during the 48 h examined in control leaves (sprayed with water) (data not shown). When leaves were treated with abscisic acid (ABA), both ZmPR10.1 and ZmPR10 expression showed a significant initial decline to about half of the levels in control leaves for ZmPR10.1 at 8 h after treatment (HAT) and for ZmPR10 at 4 HAT, and recovered to the levels in control leaves at 16 HAT (Fig. 4A). Both kinetin (KT) and gibberellic acid (GA) treatments led to a steady increase in expression of ZmPR10 until 8 HAT, and their expression decreased thereafter (Fig. 4B and C). However, only KT treatment caused a significant initial increase (2.6-fold) in ZmPR10.1 expression at 2 HAT (Fig. 4B). Its expression did not show significant changes upon GA treatment compared to the control (Fig. 4C). In response to methyl jasmonate (MeJA) treatment, only ZmPR10.1 showed a significant initial increase in expression between 2 and 4 HAT (2.3-fold at 4 HAT) (Fig. 4D). When leaves were treated with naphthalene acetic acid (NAA), both genes showed significant induction in expression (about 2-fold) at 2 HAT. ZmPR10.1 levels remained high up to 16 HAT, but the level of ZmPR10.1 declined rapidly to about half of the level in the control (Fig. 4E). For salicylic acid (SA) treatment, ZmPR10.1 and ZmPR10 expressions increased and peaked at 18 HAT for ZmPR10.1 (6-fold) and 12 HAT for ZmPR10 (2-fold) compared to control leaves (Fig. 4F).

The responses of ZmPR10.1 and ZmPR10 expression to abiotic stresses

The expression patterns of ZmPR10.1 and ZmPR10 in response to abiotic stresses depend on the treatments and a greater induction was usually observed for ZmPR10.1 than for ZmPR10 (Fig. 5). H$_2$O$_2$ treatment caused a strong induction in the expression of ZmPR10.1, which was about 3-fold the level of that in the control samples at 16 HAT, whereas the same treatment led to a modest induction of 68% for ZmPR10 expression at 16 HAT (Fig. 5A). Both ZmPR10.1 and ZmPR10 showed a similar pattern and magnitude of induction in response to CuCl$_2$ treatment (Fig. 5B). Treatment of leaves with NaCl leads to a pattern of expression different from the above (Fig. 5C). A significant induction (nearly 3-fold) in expression for both ZmPR10.1 and ZmPR10 was observed as early as 0.5 HAT. Their levels decreased to normal at 3 HAT. The expression of ZmPR10.1 and ZmPR10 under darkness, wounding or coldness was also examined. The results indicated that wounding significantly induced their expressions as early as 2 HAT for ZmPR10.1 (3.2-fold) and 4 HAT for ZmPR10 (3.1-fold). Their expressions increased about 5-fold at 16 HAT (Fig. 5D). For coldness treatment, ZmPR10.1 and ZmPR10 up-regulated significantly within 2 HAT and peaked at 16 HAT by 3.3 and 2.1-fold, respectively (Fig. 5E). During the 48-h dark treatment, the expression for both ZmPR10 and ZmPR10.1 increased significantly 12 HAT, and reached 3-fold higher than that in the control at 24 HAT. Their expressions decreased 48 HAT, but were still higher than that in the control (Fig. 5F).

The responses of ZmPR10.1 and ZmPR10 expression to biotic stresses

The expressions of ZmPR10.1 and ZmPR10 were investigated after treatment with maize bacterial pathogens. Significant induction of ZmPR10.1 and ZmPR10 expression in leaves inoculated with Erwinia stewartii was detected 36 HAT. Their expressions continued to increase and reached about 6-fold the level of the control leaves 60 HAT (Fig. 6A). Inoculation with the bacterial pathogen Erwinia chrysanthemi caused about 2-fold induction in ZmPR10.1 expression 60 HAT. However, this treatment did not cause any significant changes in the level of ZmPR10 (Fig. 6B). A 2-fold induction was observed for ZmPR10 between 12 and 60 HAT with Clavibacter michiganensis subsp. nebraskensis (Fig. 6C). The
same treatment caused a higher induction in ZmPR10 expression, which peaked at 36 HAT (3.6-fold) (Fig. 6C).

Inoculation of maize ears with *A. flavus* caused a significant induction in the expression of both ZmPR10.1 and ZmPR10 genes as early as 1 DAI up to 10 DAI compared to non-inoculated control ears. Both of them reached their highest level of induction at 2 DAI (2.7- and 3.1-fold for ZmPR10.1 and ZmPR10, respectively). The expression of ZmPR10.1 remained high until 10 DAI, whereas ZmPR10 expression declined rapidly to the control level 14 DAI (Fig. 7). In the control kernels, the expression patterns between ZmPR10.1 and ZmPR10 were also different. The expression of ZmPR10.1 remained steady during the late stages of kernel development; however, the latter continued to increase during kernel development (data not shown).

The RNase activity of ZmPR10.1 and ZmPR10

The ZmPR10.1 was over-expressed in *E. coli* to determine whether it possessed RNase activity similar to ZmPR10 (Chen et al., 2006). The over-expressed protein accounted for 19.7% of total proteins extracted from *E. coli* (Supplemental Fig. 1).
The effect of bacterial infections on the expression of ZmPR10 and ZmPR10.1 in maize leaves: (A) *Erwinia stewartii*; (B) *Erwinia chrysanthemi*; and (C) *Clavibacter michiganensis* subsp. nebraskensis; Leaves infiltrated with YDC medium only were used as a control. Values are means ± SE (n = 3). SE is indicated with a bar.

The possible RNase activity of the purified recombinant ZmPR10.1 was tested with maize root total RNA as a substrate. ZmPR10.1 showed a clear RNase activity against the total RNA (Fig. 8, lanes 4 and 6). No detectable RNA degradation was observed when maize root RNA was treated with proteins eluted from *E. coli* cells containing the vector only (Fig. 8). Further, ZmPR10.1 appeared to have a significantly higher RNase activity than ZmPR10 (Fig. 8). The difference in specific activity between ZmPR10.1 and ZmPR10 was further quantified using yeast tRNA. It was found that ZmPR10 possessed low specific activity (28.3 U mg⁻¹ protein), which was only about 12% of ZmPR10.1 (244.6 U mg⁻¹ protein).

Effect of pH, temperature and reagents on the RNase activity

Several buffers with different pH ranges were used in this study to determine the optimum pH for the activities of both PR10 proteins. The highest specific activity for both ZmPR10.1 and ZmPR10 was detected at pH 6.5 (262.2 and 30.0 U mg⁻¹ protein, respectively). Their activities declined when the buffer pH either increased or decreased, with ZmPR10.1 showing higher sensitivity to changes in pH than ZmPR10. The lowest activity was observed when PR10 proteins were exposed to buffers at pH 3.0 (42.7 and 7.2 U mg⁻¹ protein for ZmPR10.1 and ZmPR10, respectively) or pH 11.0 (11.5 and 3.0 U mg⁻¹ protein, respectively) (Supplemental Fig. 2A). However, ZmPR10.1 showed a much higher activity (3.9–11.1-fold) than ZmPR10 in these buffers. The optimum temperature for the activity of both proteins was 55 °C, with the RNase activity of 255.2 and 29.0 U mg⁻¹ protein for ZmPR10.1 and ZmPR10, respectively (Supplemental Fig. 2B). The RNase activity declined to 80.4 and 8.9 U mg⁻¹ protein, respectively, for ZmPR10.1 and ZmPR10 when temperature was lowered to 20 °C (Supplemental Fig. 2B). When the temperature was raised to 90 °C, their activity declined to 46.3% (118.0 U mg⁻¹ protein) and 40.4% (11.7 U mg⁻¹ protein) for ZmPR10.1 and ZmPR10, respectively. Again, ZmPR10.1 was more sensitive to changes in temperature than ZmPR10 and showed a much higher activity (6.6–10.1-fold) than ZmPR10 upon temperature change.

The effect of metal ions (Ca²⁺, Mg²⁺, Zn²⁺, Fe²⁺, Mn²⁺, Cu²⁺, Ag⁺ and Co²⁺) and other chemicals commonly used during protein isolations (such as ethylenediaminetetraacetic acid (EDTA), DL-dithiothreitol (DTT) and SDS) on enzyme activity was also investigated. Ca²⁺, Mg²⁺, Zn²⁺ and Mn²⁺ had little effect on the RNase activity of ZmPR10.1 (96.0%, 99%, 89.8% and 94.9%) or ZmPR10 (83.8%, 83.3%, 95.6% and 93.9%) when they were used at 1 mM concentration significantly inhibited the activities of both ZmPR10.1 and ZmPR10, especially for Ag⁺ and Cu²⁺, which reduced ZmPR10.1 activity by 88% and 79%, respectively (Supplemental Table 1).

Comparison of antimicrobial activities between recombinant ZmPR10.1 and ZmPR10 protein

The possible antifungal activity of ZmPR10.1 against *A. flavus* was also investigated in this study. ZmPR10.1 significantly inhibited the germination and growth of *A. flavus* at 20 µg mL⁻¹ (Fig. 9). Further comparison of conidia germination and fungal...
growth in medium containing different concentrations of ZmPR10.1 or ZmPR10 revealed that ZmPR10.1 appeared more potent than ZmPR10 in inhibiting A. flavus conidia germination and hyphal growth. When treated with ZmPR10.1, A. flavus showed a significantly higher reduction in conidia germination and less hyphal growth compared to that treated with ZmPR10 at either 20 or 50 μg mL⁻¹ concentration (Fig. 9).

ZmPR10.1 and ZmPR10 were over-expressed in Arabidopsis to evaluate their antibacterial activities. At least 29 and 32 transgenic lines were obtained for ZmPR10.1 and ZmPR10, respectively. The PCR results from genomic DNA with specific primer pairs confirmed the presence of transgene ZmPR10.1 or ZmPR10 (Fig. 10A). Real-time PCR of four transgenic lines (1-1, 3-4, 19-1 and 29-2) containing ZmPR10.1 and four transgenic lines (6-3, 13-3, 28-1 and 32-2) containing ZmPR10 showed that ZmPR10.1 expression was significantly lower than ZmPR10 in transgenic Arabidopsis (Fig. 10B). Three transgenic lines (two for ZmPR10.1 and one for ZmPR10) with high level expression of the transgene were further analyzed for their differences in antibacterial activities (Fig. 11). After 4-d incubation with Pseudomonas syringae DC3000, severe symptoms (necrosis and chlorosis) around the infiltrated areas were observed in control plants (transformed with vector only) (Fig. 11A). Transgenic plants of ZmPR10.1 (lines 19-1 and 29-2) showed significant less symptom development (Fig. 11A). However, no significant inhibition on disease development was observed in the transgenic plant of ZmPR10 (line 28-1) (Fig. 11A) even though its expression level was more than 2-fold higher than that of ZmPR10.1. The lesion area of line 28-1 (0.73 cm²) is not significantly different from the inoculated control plant (0.87 cm²), which was about twice the lesion area of lines 19-1 and 29-2 (only 0.43 and 0.37 cm², respectively) (Fig. 11B).

Discussion

PR10 is one of the most important families of plant pathogenESIS-related proteins that play important roles in defense against microbe attack. In this study, another member of PR10, ZmPR10.1, was isolated from maize. Sequence analysis of ZmPR10.1 showed it lacked a signal peptide like some other members of PR10 family, indicating ZmPR10.1 is an intracellular protein. The GFP-aided localization confirms that ZmPR10.1-GFP fusion protein is expressed in cytosols of transgenic Arabidopsis (data not shown), which is different from most other families of PR proteins that are either extracellular or localized in the vacuole (van Kan et al., 1992).

For better understanding the differences between the novel ZmPR10.1 and ZmPR10, a series of comparative studies were carried out to assess their potential roles in host disease resistance. Both ZmPR10.1 and ZmPR10 showed the strongest expression in root tissue, which is consistent with the expression of other PR10s (Liu et al., 2003; Hashimoto et al., 2004). Further, the higher protein expressions of ZmPR10.1 and ZmPR10 in root tissue than in leaf tissue were indirectly demonstrated by the GUS activities of transgenic Arabidopsis harboring cloned promoter pZmPR10.1 and pZmPR10.

One possible contributing factor for this high level expression in root tissue is the presence of at least 2–4 root-specific expression elements revealed during the analysis of the cloned promoters of ZmPR10.1 and ZmPR10 (Xie et al., unpublished data). Their root-specific expression might also indicate their importance in root defense since there are numerous pathogens in rhizosphere soil.
Previous studies reported that PR10 expression changed in response to salt stress in rice (Moons et al., 1997), drought stress in pine (Dubos and Plomion, 2001), UV exposure in lupine (Pinto and Ricardo, 1995), coldness in peach (Wisniewski et al., 2004) and heavy metals in birch (Koistinen et al., 2002). The PR10 expression in pine was also induced by wounding (Liu et al., 2003) and hormone treatment such as JA, SA, GA3 and ABA (Jwa et al., 2001; Zhou et al., 2002; Liu et al., 2006; Kim et al., 2008). In this study, effects of various abiotic treatments (phytohormone, chemicals, wounding, coldness and darkness) on PR10 expression were investigated. Both genes showed similar responses in most cases, which can be grouped into three different patterns. When exposed to treatments such as SA, CuCl2, H2O2, coldness, darkness or wounding, mRNA levels of both ZmPR10.1 and ZmPR10 up-regulated gradually in the 16-h of treatment. The expression of ZmPR10.1 and ZmPR10 down-regulated initially but recovered later during the ABA treatment. The third pattern is that the expression of both ZmPR10s up-regulated initially, then down-regulated when exposed to treatments such as KT, GA, MeJA and NaCl. The similar response of ZmPR10.1 and ZmPR10 to the same stress might be the result of high sequence homology (about 60% identity) between their putative promoter sequences and the presence of several stress-responsive cis-elements in both promoters, such as ABA-responsive element, W-box element, dark-responsive element (Xie et al., unpublished). However, in response to NAA treatment, ZmPR10.1 expression exhibited a pattern similar to the third one, whereas ZmPR10 expression showed a pattern similar to the first one. In most cases the magnitude of responses between the two genes was similar, ZmPR10.1 showed a consistent higher induction than ZmPR10 in responses to MeJA, SA, H2O2 and coldness treatments.

Many PR10 genes were up-regulated when plants were exposed to biotic stresses, such as viruses (Xu et al., 2003), bacteria (Robert et al., 2001) or fungi (Jwa et al., 2001). Further studies found that some PR10 proteins showed antimicrobial activities in vitro against bacteria, fungi and viruses, such as Ocatin (Flores et al., 2002), SsPR10 (Liu et al., 2006) and CaPR10 (Park et al., 2004). In this study, the expressions of ZmPR10.1 and ZmPR10 were significantly induced in response to bacterial E. stewartii inoculation on young maize leaves and to fungal A. flavus inoculation on maize immature kernels. Also, the anti-microbial activities of ZmPR10s were evaluated both in vivo through inoculation of transgenic Arabidopsis expressing ZmPR10.1 or ZmPR10 and in vitro using purified PR10 proteins against A. flavus. Transgenic Arabidopsis plants expressing ZmPR10.1 exhibited significant higher resistance toward P. syringae DC3000 infection in vivo with smaller lesion size than plants expressing ZmPR10 at a much higher level. This might be the result of a higher RNase specific activity of ZmPR10.1 compared to ZmPR10. When ZmPR10.1 and ZmPR10 proteins purified from E. coli cells over-expressing these genes were examined in vitro, both proteins exhibited a clear in vitro antifungal activity against A. flavus. These data indicate the potential involvement of both genes in host defense against bacterial and fungal pathogens. However, the mechanism of ZmPR10s' antimicrobial activities is still unclear. Lam and Ng (2001) reported that a heterodimeric RNase protein from roots of Panax notoginseng possessed both antifungal activity and translation-inhibiting activity. Another study by Chadha and Das (2006) suggested that the ribonuclease function and internalization into sensitive fungal hyphae is essential for AhPR10 antifungal activity.

Therefore, the present study further examined whether ZmPR10.1 possesses RNase activity to understand the possible mechanism of its strong antimicrobial activity. The present study revealed that ZmPR10.1 not only possesses RNase activity as ZmPR10, but also shares similar biochemical characteristics as ZmPR10, such as the same optimum pH (6.5) and temperature (55 °C), and similar inhibitions by chemicals such as Ag+, Cu2+, Co2+, EDTA, DTT and SDS. However, ZmPR10.1 has over 8-fold higher specific RNase activity than ZmPR10, which might be a contributing factor for the observed higher antimicrobial activities by ZmPR10.1. Also, ZmPR10.1 showed higher sensitivity to pH and Mn change than ZmPR10. It is unclear to us regarding these differences in biochemical characteristics since both proteins share more than 85% identity (with 23 amino acid differences out of 160 amino acid residues). However, similar results were found in the study of a PR protein (LJPR10.1B) from yellow lupine. While LJPR10.1B displayed RNase activity, its homologue (76% identity) from the same species with the same conserved glycine-rich loop (GxGxGxG), LJPR10.1A, showed no RNase activity at all (Biesiada et al., 2002). Wu et al. (2003) reported that SPE-16 showed no RNase activity after site-directed mutagenesis of only three amino acid residues (E95A, E147A and Y149A). These studies along with our data suggest that amino acid residues other than the three conserved amino acid residues (D76, G111 and G112) reported by Wu et al. (2003) are also critical for the activity since these three amino acid residues are all present at similar positions in LJP10.1A/LJP10.1B and ZmPR10/ZmPR10.1.

In conclusion, a novel PR10, ZmPR10.1, was isolated from maize that shares 89.8% of homology to the previously reported ZmPR10. ZmPR10.1 had significantly lower expression levels than ZmPR10 in all tissues investigated. Both ZmPR10s showed similar expression profiles when exposed to most of biotic or abiotic stresses except...
for NAA and *E. chrysanthemi* treatment. Although ZmPR10 expresses at a consistently higher level than ZmPR10.1 in all tissues examined, ZmPR10.1 may play as important a role in host defense as ZmPR10 based on its higher specific RNase activity, and a higher resistance it conferred in transgenic *Arabidopsis* to a bacterial pathogen with a much lower expression compared to ZmPR10.

Acknowledgements

We thank Drs. M. Catherine Aime, Kenneth E. Damann and James V. Moroney for critical reviewing of the manuscript and Nicole Hazard for technical assistance. This study was supported by USDA cooperative agreement 58-6435-6-055. Published with the approval from the Director of the Louisiana Agricultural Experiment Station as Manuscript no. 2009-240-2574.

Appendix A. Supporting Information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jplph.2009.07.004.

References

Lam SM, Ng TB. Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginger *Panax notoginseng*. Biochim Biophys Res Commun 2001;285:419–23.

Xu P, Blancafior EB, Roosink MJ. In spite of induced multiple defense responses, tomato plants infected with *cucumber mosaic virus* and *D* satellite RNA succumb to systemic necrosis. Mol Plant Microbe Interact 2003;16:467–76.

